© Adis International Limited. All rights reserved.

# Guidelines for Daily Carbohydrate Intake Do Athletes Achieve Them?

Louise M. Burke, Gregory R. Cox, Nicola K. Cummings and Ben Desbrow Department of Sports Nutrition, Australian Institute of Sport, Belconnen, ACT, Australia

# Contents

| Abstract                                                                     |
|------------------------------------------------------------------------------|
| 1. Guidelines for Carbohydrate (CHO) Intakes By Athletes                     |
| 2. Dietary Survey Methodology                                                |
| 2.1 Recording Errors                                                         |
| 2.1.1 Extent of Under-Reporting                                              |
| 2.1.2 Characteristics of People Likely to Under-Report                       |
| 2.1.3 Other Quantification Errors                                            |
| 2.1.4 Effect of Quantification Errors on Estimations of Macronutrient Intake |
| 2.1.5 Reliability: How Many Days Need to Be Recorded?                        |
| 2.2 Errors in Data Analysis                                                  |
| 3. Dietary Surveys of Athletes                                               |
| 3.1 How Well Do Athletes Appear to Be Meeting CHO Intake Guidelines?         |
| 3.2 Have CHO Intakes Increased Over Time?                                    |
| 4. Do Athletes' Eating Practices Demonstrate Optimal Intake?                 |
| 4.1 Factors Causing Suboptimal CHO Intake 292                                |
| 5. Conclusion                                                                |

# Abstract

Official dietary guidelines for athletes are unanimous in their recommendation of high carbohydrate (CHO) intakes in routine or training diets. These guidelines have been criticised on the basis of a lack of scientific support for superior training adaptations and performance, and the apparent failure of successful athletes to achieve such dietary practices. Part of the problem rests with the expression of CHO intake guidelines in terms of percentage of dietary energy. It is preferable to provide recommendations for routine CHO intake in grams (relative to the body mass of the athlete) and allow flexibility for the athlete to meet these targets within the context of their energy needs and other dietary goals. CHO intake ranges of 5 to 7 g/kg/day for general training needs and 7 to 10 g/kg/day for the increased needs of endurance athletes are suggested. The limitations of dietary survey techniques should be recognised when assessing the adequacy of the dietary practices of athletes. In particular, the errors caused by under-reporting or undereating during the period of the dietary survey must be taken into account.

A review of the current dietary survey literature of athletes shows that a typical male athlete achieves CHO intake within the recommended range (on a g/kg basis). Individual athletes may need nutritional education or dietary counselling

to fine-tune their eating habits to meet specific CHO intake targets. Female athletes, particularly endurance athletes, are less likely to achieve these CHO intake guidelines. This is due to chronic or periodic restriction of total energy intake in order to achieve or maintain low levels of body fat. With professional counselling, female athletes may be helped to find a balance between bodyweight control issues and fuel intake goals.

Although we look to the top athletes as role models, it is understandable that many do not achieve optimal nutrition practices. The real or apparent failure of these athletes to achieve the daily CHO intakes recommended by sports nutritionists does not necessarily invalidate the benefits of meeting such guidelines. Further longitudinal studies of training adaptation and performance are needed to determine differences in the outcomes of high versus moderate CHO intakes. In the meantime, the recommendations of sports nutritionists are based on plentiful evidence that increased CHO availability enhances endurance and performance during single exercise sessions.

Official dietary guidelines for athletes all recommend high carbohydrate (CHO) intakes in routine or training diets.<sup>[1-4]</sup> Periodically, however, these guidelines are questioned. For example, in the Wolffe Memorial Lecture presented to the American College of Sports Medicine in 1996 by Professor Timothy Noakes,<sup>[5]</sup> CHO intake guidelines were identified as being one of five key paradigms in sports science that need to be revisited. He argued that the position that all endurance athletes should ingest diets rich in CHO could be refuted by at least 2 observations.<sup>[5]</sup> First, the present literature fails to support the benefits of long term high CHO intakes on the training adaptations and performance of athletes undertaking intensive daily workouts. Second, it was asserted by Prof Noakes that 'despite the recent intrusion of sports nutritionists dedicated to the promotion of high CHO diets', athletes do not eat such CHO-rich diets in training and have not increased their CHO intake over the past 50 years. Presumably, if it were advantageous to athletic performance, we might expect athletes to follow a high CHO diet. The argument concluded that the absolute conflict between sports nutrition guidelines and the reported dietary intakes of athletes makes it important for scientists to reconsider whether their advice is correct.

Whilst CHO intake guidelines may be used to benchmark the dietary patterns of groups, they also provide specific dietary advice and can help to assess the nutritional status of individual athletes in a clinical situation. The aims of this review are: to clarify guidelines for routine CHO intake of athletes undertaking heavy training loads; to examine the actual CHO intakes of athletes; and, to consider if this information is sufficient to confirm that such guidelines are unnecessary or incorrect. Particular emphasis will be directed towards the methodologies used to collect and interpret dietary survey data on the CHO intakes of athletes, since these are often badly understood by those not trained in nutrition.

# 1. Guidelines for Carbohydrate (CHO) Intakes By Athletes

The availability of CHO as a substrate for muscle and the central nervous system is a critical factor in the performance of prolonged sessions (>90 minutes) of submaximal or intermittent, highintensity exercise, and it plays a permissive role in the performance of brief high-intensity work (for reviews, see Hawley & Hopkins<sup>[6]</sup> and Hargreaves<sup>[7]</sup>). Total body CHO stores are limited, and they are often substantially lower than the fuel requirements of the daily exercise programmes of many athletes. CHO intake before and during exercise, and in the recovery periods between prolonged exercise bouts, provides a variety of options for increasing body CHO availability in the short term. CHO intake strategies that maintain or enhance CHO status have been shown to reduce or delay the onset of fatigue, and enhance performance during a single session of prolonged exercise.<sup>[7]</sup>

There is abundant literature describing beneficial effects of CHO feeding strategies, singly or in combination, on the performance of a single exercise session.<sup>[8-19]</sup> These results have been summarised into specific guidelines (table I). Since a primary goal is to provide fuel for the working muscle, it makes sense to describe CHO needs relative to the body mass of the athlete. While this does not entirely account for differences in the amount of muscle actively involved in an exercise task, it at least recognises that athletes vary considerably in body size. Thus, single guidelines can be written to include the 45kg marathon runner as well as the 100kg football player.

The extrapolation of these CHO intake guidelines into recommendations for the routine diet of the athlete has been problematic. This is partly due to misunderstandings arising from the terminology used to describe CHO intake. Since the 1960s, general population dietary guidelines have included recommendations for the intake of macronutrients in terms of the proportion of total dietary energy they should typically contribute. CHO has been considered an 'energy filler'; the energy component (usually expressed as a ratio) that is left after protein requirements have been met and health benefits of moderating fat intake to a lower, 'healthier' level have been taken into account. Population guidelines in developed countries typically recommend an increased CHO intake, particularly from nutritious CHO-rich foods, to provide at least 50 to 55% of total dietary energy.<sup>[20,21]</sup> These generic guidelines promote the health benefits of a relative decrease in fat intake and an increase in CHO intake across a population, but they may be unable to address the specific needs of certain subgroups. Athletes who have specific CHO needs to fuel their daily training programmes and a wider range of energy requirements than found in the general population are one such subgroup.

Within the dietary guidelines specially prepared for athletes, information on ideal CHO intakes has generally followed the tradition of describing CHO as an energy ratio. For example, in official position statements prepared by sports nutrition expert groups, athletes are advised to consume diets pro-

Table I. Guidelines for CHO intake by athletes

| Situation                                                                                                                                               | Recommended CHO intake <sup>a</sup>                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Short term/single event                                                                                                                                 |                                                                            |
| Optimal daily muscle glycogen storage (e.g. for post-exercise recovery,<br>or to fuel up or CHO load prior to an event)                                 | 7-10 g/kg BM/day <sup>[8,9]</sup>                                          |
| Rapid post-exercise recovery of muscle glycogen, where recovery between session is <8h                                                                  | 1 g/kg BM immediately after exercise, repeated after 2h <sup>[10,11]</sup> |
| Pre-event meal to increase CHO availability prior to prolonged exercise session                                                                         | 1-4 g/kg BM eaten 1-4h pre-exercise <sup>[12-14]</sup>                     |
| CHO intake during moderate-intensity or intermittent exercise of >1h                                                                                    | 0.5-1.0 g/kg/h (30-60 g/h) <sup>[15-17]</sup>                              |
| Long term or routine situation                                                                                                                          |                                                                            |
| Daily recovery/fuel needs for athlete with moderate exercise programme (i.e. <1h, or exercise of low intensity)                                         | 5-7 g/kg/day                                                               |
| Daily recovery/fuel needs for endurance athlete (i.e. 1-3h of moderate to high intensity exercise)                                                      | 7-10g/kg BM/day <sup>[8,9]</sup>                                           |
| Daily recovery/fuel needs for athlete undertaking extreme exercise programme (i.e. >4-5h of moderate to high intensity exercise such as Tour de France) | 10-12+ g/kg BM/day <sup>[18,19]</sup>                                      |
| a Key references have been provided in the form of original studies, exc<br>consensus papers summarising data from numerous studies are avai            | cept in the case of CHO intake during exercise where reviews or lable.     |

BM = body mass; CHO = carbohydrate.

viding at least 55% of energy from CHO,<sup>[3]</sup> or 60 to 65% of energy from CHO.<sup>[1]</sup> In the case of 'endurance' or 'endurance training' athletes, who undertake prolonged daily exercise session with increased fuel requirements, CHO intake recommendations have been set variously at >60% of energy<sup>[2]</sup> or 65 to 70% of dietary energy.<sup>[1]</sup> It should be noted that dietary guidelines or position statements have a different focus than individual studies in which CHO intake is manipulated to achieve a short term effect such as glycogen supercompensation.<sup>[22,23]</sup> In such studies, where extreme or atypical diets are often used to ensure that the desired effect is produced, participants may be fed CHO intakes of >70% of total energy consumption. However, in setting guidelines for long term intakes of CHO, nutrition experts must take into account the practicality of planning meals and long term nutritional issues such as requirements for energy, other macronutrients and micronutrients. Thus, the CHO intake goal is moderated (to <70% of energy) to ensure that other nutritional goals can be met simultaneously.

Unfortunately, the rigid interpretation of guidelines based on energy ratios can prove unnecessary and unfeasible for some athletes. Athletes who consume very high energy diets (e.g. >4000 to 5000 kcal/day or 16 to 20 MJ/day) will achieve absolute CHO intakes of over 650 to 900 g/day with a dietary prescription of 65 to 70% of total energy. This may exceed their combined requirement for daily glycogen storage and training fuel and, furthermore, it may be bulky and impractical to consume. Athletes with such large energy intakes may be able to meet their daily needs for glycogen recovery with a CHO intake providing 45 to 60% of total energy. On the other hand, other athletes report eating lower energy intakes than might be expected. These athletes may need to devote a greater proportion of their dietary intake (e.g. up to 65 to 70% of total energy) to CHO intake, and even then may fail to meet the absolute CHO intakes suggested for optimal daily glycogen recovery. This is particularly true of female athletes (for review, see Burke<sup>[24]</sup>).

In practice, the CHO and energy needs of athletes are not always well synchronised. Therefore, we believe it is preferable to provide recommendations for routine CHO intake in grams (relative to the body mass of the athlete) and allow flexibility for the athlete to meet these intakes within the context of their energy needs and other dietary goals. We have suggested some guidelines, interpolated from studies of short term fuel needs for training, in table I. We propose that such guidelines are not only more specific to the fuel needs of muscle, but are more 'user friendly'. For example, the athlete can be provided with a range of daily CHO intakes that might be considered suitable, and can use food composition information or a ready reckoners of the CHO content of food to plan or assess their food intake. The ranges are quite generous to allow for the variation in fuel needs among individuals and the opportunity to achieve these. With the specialised and individualised advice of a sports nutrition expert, an athlete should be able to fine-tune their daily CHO intake goals.

Although this gram per kilogram terminology is a familiar concept to most exercise scientists, and is the means by which most reviewers have described CHO intake in the exercise literature, it has not been incorporated into the official sports nutrition guidelines promoted by sporting bodies or sports nutrition groups. Indeed, we only could only find 1 recent position paper on nutrition for athletes and physically active people that used this preferred terminology, in which the daily CHO intake requirements were set at 6 to 10 g/kg body mass.<sup>[4]</sup> Therefore, a secondary goal of this review is to provide evidence that percentage energy and gram per kilogram nomenclature for CHO intake are not interchangeable, and that the use of percentage energy guidelines to set or assess CHO intakes for athletes can lead to misinterpretations.

In presenting guidelines for CHO intakes in the routine or long term diets of athletes, we must acknowledge that the direct application of recommendations from short term CHO feeding studies, while logical, has not been demonstrated to have unequivocal benefits for training adaptations and performance.<sup>[25-29]</sup> One possible conclusion from the available studies of long term dietary patterns and exercise performance is that athletes can adapt to the lower muscle glycogen stores resulting from lower CHO intakes, such that it does not impair training or competition outcomes.<sup>[30]</sup> However, there are other interpretations of this literature, and it should be pointed out that no study shows that moderate CHO intakes promote superior training adaptations and performance compared with higher CHO diets. Several methodological issues are important, including the overlap between what is considered a 'moderate' and a 'high' CHO diet in various studies. Other important issues include whether sufficient time was allowed for differences in the training responses of athletes to lead to significant differences in the study performance outcome, and whether the protocol used to measure performance was sufficiently reliable to detect small but real improvements that would be of significance to a competitive athlete.<sup>[31]</sup>

Clearly, further research needs to be undertaken, using specialised and rigorous protocols, to better examine the issue of long term CHO intake in heavily training athletes. Since such studies require painstaking control over a long duration, it is not surprising that there are few such reports. In the meantime, although the lack of clear support in the literature is curious, the evidence from studies of short term CHO intake and exercise performance remains our best guess to the long term CHO needs of athletes. It is of interest to see how well athletes appear to have responded to these short term guidelines.

## 2. Dietary Survey Methodology

Assessing the dietary intake of individuals or groups is complex and challenging. Details of approaches to these assessments are provided in the numerous reviews on dietary survey methodology.<sup>[32-36]</sup> Since the 1940s, nutrition experts have developed and validated a number of dietary survey techniques, the features of which are summarised in table II.

In populations of athletes, the written food diary (both weighed and household measures) has been the popular choice of dietary survey instrument. Once dietary intake data are collected, they are analysed using computer programs based on food composition databases. Section 2.1 focuses on the main limitations and sources of error in dietary intake data collected by food diaries. Errors involved in the analysis of food records, which must be taken into account when interpreting nutrient intake data, are briefly discussed in section 2.2.

# 2.1 Recording Errors

All dietary survey techniques are challenged by errors of validity (how accurately the data measure actual food intake) and reliability (how well the data reflect typical intake). Food diaries propose to monitor intake over a specific period of observation, which is representative of a generalised period of interest. The period of interest may vary from a specific dietary/exercise activity (e.g. CHO loading, racing in a tour) to the athlete's 'overall' or 'typical' diet. Unfortunately, there is considerable evidence that inaccurate reporting of intake is a universal problem of self-reported dietary assessments.<sup>[48-57]</sup> Inaccurate reporting can occur in a number of separate ways.

- The athlete may alter their dietary intake during the period of recording, and therefore it does not reflect their usual intake.
- The athlete records their dietary intake inaccurately to improve the perception of what they are eating (i.e. they omit or underestimate the intake of foods or meals considered undesirable, or they falsely report the intake of foods considered desirable).
- The athlete makes errors in quantification or description while recording their food intake.

Fortunately, energy requirements and energy balance can be assessed independently by observing changes in body composition while participants are fed in metabolic wards, by calorimetric methods or, more recently, via tracer technology using the double-labelled water technique.<sup>[58]</sup> These methods have allowed nutritionists to validate the accuracy of self-reported dietary intake. Extensive study of the accuracy of food diaries has found that the bias of reporting errors is towards under-reporting

| Table II. Commonly | / used method | s for collecting | dietary | intake data | aa |
|--------------------|---------------|------------------|---------|-------------|----|

| Method                           | Description                                                                                         | Period of food intake                                                                                                                                                                                                                                                                                    | Advantages                                                                                                   | Disadvantages                                                                                        |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Retrospective                    |                                                                                                     |                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                      |  |
| 24h recall                       | Subjects describe foods consumed over the last 24h or on a 'typical day'                            | 24h                                                                                                                                                                                                                                                                                                      | Speedy                                                                                                       | Relies on subject's honesty, memory, and food knowledge                                              |  |
|                                  | Widely used in epidemiological research                                                             |                                                                                                                                                                                                                                                                                                          | Low subject burden                                                                                           | Requires trained interviewer                                                                         |  |
|                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                          | Interview can be structured around daily activities                                                          | Day chosen may be 'atypical'                                                                         |  |
|                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                          | Doesn't alter usual intake                                                                                   | Suitable for group analysis but not representative of individual's normal intake                     |  |
|                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                          | Food models assist estimation of food serves <sup>[37]</sup>                                                 |                                                                                                      |  |
| Food frequency<br>questionnaires | Subjects asked how often they eat foods from a number of groups on a standardised list              | From 24h period to open-ended<br>(eg. How often do you eat a certain<br>food?)                                                                                                                                                                                                                           | Self administered                                                                                            | Relies on responder's honesty, memory,<br>literacy and food knowledge                                |  |
|                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                          | Can be used to cross-check data<br>obtained from other methods                                               | Validity dependent on the food list and the<br>quantification method                                 |  |
|                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                          | Validated for ranking individual intake <sup>[38]</sup>                                                      |                                                                                                      |  |
|                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                          | Validated against 7 day weighed record <sup>[39]</sup>                                                       |                                                                                                      |  |
|                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                          | Can be modified to target certain<br>nutrients or populations                                                |                                                                                                      |  |
| Diet history                     | Open-ended interview concerning food use, food preparation, portion sizes, food                     | Open-ended or over a specified period                                                                                                                                                                                                                                                                    | Accounts for daily variation in food intake by investigating a 'typical' day                                 | Relies on responder's honesty, memory,<br>food knowledge                                             |  |
|                                  | like/dislikes and a food checklist Originally<br>also incorporated 24h recall & food                |                                                                                                                                                                                                                                                                                                          | Can target contrasts between seasons, training status etc                                                    | Labour intensive & time consuming                                                                    |  |
|                                  | inequency techniques                                                                                |                                                                                                                                                                                                                                                                                                          | Food models assist estimation of food serves <sup>[37]</sup>                                                 | Requires trained interviewer                                                                         |  |
| Prospective                      |                                                                                                     |                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                      |  |
| Written dietary record           | Weighed/semi weighed (household<br>measures) Considered the gold standard<br>for dietary assessment | One Day: Not suitable for individual<br>assessment due to large daily<br>variability in food intake. Used for<br>large population studies -<br>maximising subject numbers rather<br>than number of recorded days is<br>best way to minimise variability<br>when looking for usual intake <sup>[40]</sup> | More accurate quantification of foods                                                                        | Relies on responder's honesty, memory, food knowledge                                                |  |
|                                  |                                                                                                     | Three Day: Widely used. Originally<br>promoted as minimum requirement<br>to indicate intake of individuals.<br>Should include weekday and<br>weekend days to reduce bias                                                                                                                                 | Use of PETRA (Portable electronic tape recorded automatic scales) decreases subject workload <sup>[41]</sup> | Time consuming for subjects                                                                          |  |
|                                  |                                                                                                     | Seven Day: Increased record<br>length reduces compliance,<br>especially in less motivated or<br>educated groups. <sup>[42]</sup> However, it<br>increases reliability of data,<br>especially when looking at intakes<br>of individuals                                                                   | Improved compliance with subjects<br>compared with weighed record                                            | Subjects often alter their diet to improve<br>their intake or to reduce the workload of<br>recording |  |

# table II continued

usual dietary intake, and the extent of this underreporting is widespread and significant.<sup>[48-57]</sup>

#### 2.1.1 Extent of Under-Reporting

Studies using different methodologies have reported consistent results on the extent of underreporting in dietary surveys across mixed populations. Mertz et al.<sup>[51]</sup> examined the accuracy of 14 years of dietary records kept by 266 individuals (general population) participating in various intervention studies in their research centre. In all of the protocols, each participant was trained by a dietitian on how to complete a record of their habitual diet prior to their participation, and they were subsequently fed a diet that was adjusted to maintain their bodyweight. A comparison of the energy intakes reported in the records and the amounts required for bodyweight maintenance yielded a mean under-reporting error of 18%.

Another study comparing the self-reported intakes of individuals randomly sampled from a national dietary survey with measurements of their energy expenditure determined by the double-labelled water method calculated that the dietary surveys under-reported energy intake by an average of 20%.<sup>[53]</sup> These 2 studies were also consistent in finding that about 80% of the participants were significant under-reporters.<sup>[51,53]</sup>

It is tempting to infer from these studies that a simple correctional factor could be applied to the data collected in dietary surveys. However, it should be noted that reporting errors are not consistent, in terms of extent or direction, within a group. For example, in the study by Mertz et al.,[51] 81% of participants were noted to be under-reporters, 11% of the participants reported intakes within their approximate energy requirements and 8% significantly over-reported their intake. Other studies have identified the types of people who are most likely to under-report, noting that mean under-reporting errors can exceed 30%.<sup>[48,52-54,57,59]</sup> Thus, while a correctional factor of 20% might be cautiously applied to group data, especially when they are derived from large and varied populations, it is not appropriate for correcting data reported by individuals or by

|                             |                                                                                                                   | For adults: 7 days is minimum<br>record length required to rank<br>subjects according to intakes of<br>energy, protein, fat, carbohydrate <sup>[43]</sup> | Less alteration of normal eating pattern<br>compared to weighed or semi-weighed<br>records                             | See weighed record comments                                   |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
|                             |                                                                                                                   |                                                                                                                                                           |                                                                                                                        | Requires checking by trained person                           |  |  |
|                             |                                                                                                                   |                                                                                                                                                           |                                                                                                                        | Needs standardised set of household measures                  |  |  |
|                             |                                                                                                                   |                                                                                                                                                           |                                                                                                                        | Relies on subject assessment of portion sizes <sup>[44]</sup> |  |  |
| Duplicate portion           | Subject places exact duplicates of                                                                                | 24h – open-ended                                                                                                                                          | Analysis is independent of food databases                                                                              | Relies on subject's honesty and memory                        |  |  |
| C<br>T                      | consumed food items into a container.                                                                             |                                                                                                                                                           |                                                                                                                        | Large compliance burden for subject                           |  |  |
|                             | analysed for nutrients. Subjects may also                                                                         |                                                                                                                                                           |                                                                                                                        | Food analysis expensive                                       |  |  |
|                             | have to keep food records as back up                                                                              |                                                                                                                                                           |                                                                                                                        | Causes alteration to usual food intake <sup>[45]</sup>        |  |  |
| Photographic dietary record | Subjects are issued with a camera and a food record book. Photographs are taken of all foods consumed and details | 24h - open-ended                                                                                                                                          | Standardised photographic lengths (i.e. distance between the camera and the meal) are useful to validate portion sizes | Relies on subject's honesty, memory and food knowledge        |  |  |
|                             | including meal preparation method and<br>ingredients for each meal are recorded                                   |                                                                                                                                                           | Cost effective compared with weighed food records <sup>[46]</sup>                                                      | Requires subject education on<br>photographic technique       |  |  |
|                             |                                                                                                                   |                                                                                                                                                           | Can be used when dining out                                                                                            | Requires completion of food record to                         |  |  |
|                             |                                                                                                                   |                                                                                                                                                           | Useful in population with lower literacy skills                                                                        | s detail cooking methods, ingredient list e                   |  |  |

a Other methods for making dietary assessments: Interactive touch screen computer techniques;<sup>[47]</sup> video record for collecting a 24h recall, or taking a food record; tape recorders utilising computer chips. Carbohydrate Intake of Athletes

groups with unusual characteristics related to their nutrition.

# 2.1.2 Characteristics of People Likely to Under-Report

Several studies have identified special populations who are more likely to under-report, or who under-report to a greater extent. Those who are obese or are dissatisfied with their body mass and body image are commonly identified in these categories.<sup>[48,52-54,57,59]</sup> Scientists who have attempted to explain why people under-report their food intake speculate that at least some of the error occurs because participants tend to report intakes that are similar to the expectations of the general population. For example, obese individuals report intakes similar to those of nonobese people, and athletes may report intakes similar to their less active counterparts.<sup>[46]</sup> In one study<sup>[56]</sup> participants continued to under-report, despite being told that the researchers could verify their intake. It was concluded that some under-reporting may be an intentional attempt to present a better image to a society that is increasingly critical of overweight people and overeating.

Other factors explaining under-reporting include omitting items such as second helpings or snacks because of the inconvenience of recording, or failing to report items considered 'unhealthy'.<sup>[49,51]</sup> Individuals may either fail to record their actual intake of these foods (maintaining but under-reporting their usual intake) or omit these troublesome items from their diet for the period of recording (failing to record usual dietary habits). These factors might be expected to operate in populations of people with busy lifestyles and/or a sense of obligation about what they *should* be eating. These characteristics remain true for many groups of athletes.

Although under-reporting errors can be subdivided into undereating (reducing food intake during the period of recording) and under-recording (failing to record all food consumed during the observation period), few studies have tried to measure the relative contribution of each aspect to the total error. Theoretically, an estimation could be made if independent measures of the energy expenditure of the participants during the period of recording were available, as well as measures of changes in body composition to estimate energy surplus or deficit<sup>[60]</sup> and, ideally, a marker of the accuracy of recording. Such a dietary study was conducted on female dietitians, who were characterised as lean individuals with a high degree of motivation and knowledge about food.[61] Using double-labelled water to measure water loss, a high correlation between recorded and predicted water intake was observed, suggesting a high precision in dietary recording. However, bodyweight loss measured during the recording period indicated that the dietitians under-reported their habitual energy intake by a mean of 16%, with this discrepancy being almost entirely explained by undereating.[61]

Several sophisticated energy balance studies have also been carried out on athletes and most,[61-65] but not all,<sup>[65,66]</sup> have found discrepancies between reported energy intakes and energy requirements. Double-labelled water estimations of energy expenditure by cyclists competing in the Tour de France produced values that were 13 to 35% greater than the reported energy intakes, despite the maintenance of body composition throughout the study periods.[61] Edwards et al.<sup>[64]</sup> found that the mean reported energy intake of a group of female distance runners was 32% below the double-labelled water estimates of energy expenditure over the same period of energy balance monitoring. Interestingly, the energy discrepancies in individual runners ranged from 4 to 58% and were the greatest in the heavier runners who also displayed a greater dissatisfaction with their body image.<sup>[64]</sup> Similar outcomes were reported in another study where indirect calorimetry was used to estimate energy expenditure.[65] Whereas no difference was found between mean reported energy intake and energy expenditure required for energy balance in a group of elite female soccer players, a group of female athletes in 'aesthetic' sports (figure skaters and gymnasts) reported intakes that were only 45% of estimated energy expenditure.<sup>[65]</sup>

Finally, some energy balance studies have been able to show that athletes reduce their food intake while recording dietary surveys. Schulz et al.<sup>[62]</sup> studied female distance runners who during a 6day period of observation, reported energy intakes that were only 78% of the energy expenditure estimated by the double-labelled water technique. Although eating during this period was supposed to reflect usual intake, participants lost bodyweight during the study. When, this loss of body stores was taken into account, the reported energy intake was within 10% of the estimated actual intake.

In summary, it seems reasonable to expect that most athletes will under-report or underconsume their usual intakes when filling dietary records, and that groups or individuals who are bodyweight/physique conscious or are dissatisfied with their body image are at the highest risk for significant underestimation. The best accuracy with self-reported dietary assessment tools might be expected from athletes who are confident of their eating habits and body image, and who are highly motivated to receive valuable feedback. Training of such individuals is likely to enhance their record-keeping skills.

#### 2.1.3 Other Quantification Errors

The quantification of food portions is a problem in dietary surveys if food diaries that are not weightbased are used, or if dietary recalls and dietary histories are used. Food models, food images, household measures and training have each been proposed to assist in the estimation of food quantities; however, studies generally report that people find it difficult to estimate portion sizes accurately.<sup>[67,68]</sup> Significant under- and overestimation of food quantities are both common.<sup>[68]</sup>

Selective bias arising from the characteristics of the individual, such as age, gender and body size, is possible, as is bias due to characteristics of the food. Of most interest to athletes is a US study conducted on state-level rowers who were asked to estimate the quantities of a range of liquid foods, set-shape foods (e.g. meat) and amorphous foods (e.g. cereals, pasta) [M.K. Martin, unpublished observations]. The mean value for estimations across all foods was within 5% of the actual portion size. However, there was a large variation in precision between foods (mean estimations ranging from – 30% for one food to +27% for another), and between individuals (with individual estimates ranging from 19 to 400% of the true portion size). Further study is required to ascertain if biases exist among groups of athletes or foods commonly eaten by athletes.

#### 2.1.4 Effect of Quantification Errors on Estimations of Macronutrient Intake

Under-reporting or quantification errors may not affect estimated intakes of various nutrients equally. It is possible that intakes of certain types of meals or foods are selectively misreported because of the embarrassment of admitting the intake of 'undesirable' foods, the desire to be seen to be consuming 'good' foods, or the difficulty and inconvenience of recording 'hard to report' foods. For example, some researchers have found that identified underreporters record a lower intake of snacks and lower intakes of high-fat and/or high-sugar foods and alcoholic beverages than the rest of their survey sample.<sup>[52,55]</sup>

Similar studies of populations of athletes are required to determine whether there is a systematic bias to under- or over-report certain foods. At present, no such data are available. For the purposes of this review, it would be useful to focus interest on dietary CHO sources such as CHO-rich snacks eaten between meals, food/fluid supplies consumed during exercise and special sports foods. It is possible that bodyweight-conscious athletes might deem snacks as undesirable, or that foods/fluid consumed in relation to exercise sessions might be inconvenient to record or not regarded as part of the 'routine diet'. Alternatively, the focus on the importance of CHO intake to athletic performance may lead some athletes to increase their reported intake of these foods during a period of dietary recording. If so, these biases would have a greater impact on the estimated CHO intakes of athletes in dietary surveys than the apparent energy intake discrepancies.

#### 2.1.5 Reliability: How Many Days Need to Be Recorded?

The goal of many dietary surveys is to comment on the long term or usual intake of their participants. However, because we eat differently from day to day, there is considerable variability in our daily intake of energy and nutrients. This affects the statistical precision of estimated intakes of such nutrients. Several studies have investigated the number of days of recording that are necessary to estimate the intakes of individuals or groups with a reasonable degree of precision.<sup>[46,69,70]</sup> For most populations, energy and CHO intakes are found to be among the most stable. For individuals, accepting that an estimate would be within 10% of the true intake value for 95% of the time. 31 days of recording are needed to predict the usual intake of energy or CHO.<sup>[70]</sup> In the case of group data, precision can be improved by increasing the number of participants or the number of recording days. Where sample sizes are typically 10 to 20 people, it has been estimated that approximately 3 days, and 4 to 5 days are needed to estimate average group data for energy and CHO intake, respectively.<sup>[70]</sup> A longer recording period is needed, however, if individuals are to be ranked within the group according to their intake.<sup>[46]</sup>

## 2.2 Errors in Data Analysis

The processing of the information provided by a food record involves its interpretation by the investigator so that coding decisions may be made. This is followed by data entry into a computerised dietary analysis program. Such programs access a food composition database. The various databases can differ in terms of the source of the food composition data, the number of foods that are included, the range of nutrients for which data are available and the method of analysis used in obtaining these nutrient data. Although computer dietary analysis programs are now widely available, and are apparently easy to use, it is recommended that data entry and the interpretation of dietary survey information remain the role of appropriately trained investigators. This may help to eliminate errors and reduce the variability in decisions such as quantifying the portions of foods described by participants, and matching food descriptions to foods contained in the database.

However, even when differences in decisions regarding data entry are eliminated, there are still considerable differences in nutritional analysis results produced by various computerised food composition databases.<sup>[71,72]</sup> This suggests that some caution must be applied when comparing dietary surveys of different groups, and that if longitudinal studies are undertaken over a period of years, data analysis should be performed using the same dietary program. Inaccuracies or variability may be a particular problem for surveys where participants consume a large proportion of their intake from unusual foods for which nutrient analysis is not readily available in the food composition database. Foods that are often under-represented on such databases include ethnic and commercially prepared foods, home recipes and formula products such as sports foods.

# 3. Dietary Surveys of Athletes

This section reviews the literature on self-reported CHO intakes of high-grade athletes. We collected this literature by undertaking searches using the Medline and Sport Discus databases and by crossreferencing the articles located from these sources. Abstracts were not included. We focused our review on dietary intake data representing the long term or routine eating patterns of subelite and elite athletes. We also included competition dietary intake data from stage races involving participation of more than 5 days, since this also represented a type of longer term eating practice. An objective description of the calibre of the athletes surveyed is presented where it was available in the literature. We discarded studies involving groups of athletes described as 'recreational'. We also discarded surveys of undifferentiated entrants in sporting events (e.g. registrants of a city marathon) and groups of athletes with a training history that failed to meet our expectations (e.g. distance runners with a mean training distance of <70km per week). Surveys involving groups with a mean age of less 15 years were not included unless they concerned sports where it is typical for young athletes to be undertaking a full training load (e.g. swimmers, gym-

| Population                                                                                                   | n        | Method                                             | Age              | BM        | Energy     | Energy |         |          | Reference |    |
|--------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------|------------------|-----------|------------|--------|---------|----------|-----------|----|
|                                                                                                              |          |                                                    | (y)              | (kg)      | MJ         | KJ/kg  | g       | g/kg     | %E        | _  |
| International athletes at 1948<br>London Olympic Games                                                       |          | 4d duplicate meal<br>collection, chemical<br>assay | 17-41            |           |            |        |         |          |           | 73 |
| Endurance athletes (distance runners, cyclists, swimmer)                                                     | 8M       |                                                    |                  | 64        | 14.01      | 219    | 375     | 5.9      | 45        |    |
| Non-endurance athletes (track<br>and field athletes, gymnasts,<br>wrestler, basketball)                      | 20       |                                                    |                  | 69        | 14.03      | 203    | 412     | 6.0      | 49        |    |
| US collegiate non-endurance<br>(track, football, basketball)                                                 | 60M      | 4-5d food diary kept<br>by observer                | 20               | 85        |            |        |         |          |           | 74 |
| preseason training                                                                                           |          |                                                    |                  |           | 18.26      | 215    | 487     | 5.7      | 45        |    |
| season                                                                                                       |          |                                                    |                  |           | 19.14      | 225    | 438     | 5.2      | 38        |    |
| International athletes at 1952<br>Helsinki Olympic Games                                                     |          |                                                    |                  |           | 18.8       |        | 450     |          | 40        | 75 |
| Phillipino national team<br>athletes (track & field,<br>swimmers, cyclists,<br>weightlifters, team athletes) | 17M      | 3d weighed food<br>diary kept by<br>observer       | 24               | 64        | 10.45      | 163    | 388     | 6.1      | 63        | 76 |
|                                                                                                              | 8F       |                                                    | 21               | 56        | 9.05       | 163    | 321     | 5.7      | 61        |    |
| Australian Olympic athletes                                                                                  |          | 7d food diary<br>(household<br>measures)           | 14-40            |           |            |        |         |          |           | 77 |
| females                                                                                                      | 14       |                                                    |                  |           |            |        |         | 4.8      | 40        |    |
| heavy training males                                                                                         | 27       |                                                    |                  |           |            |        |         | 5.9      | 44        |    |
| medium training males                                                                                        | 20       |                                                    |                  |           |            |        |         | 4.7      | 41        |    |
| light training males                                                                                         | 16       |                                                    |                  |           |            |        |         | 4.6      | 40        |    |
| BM = body mass; CHO = carboh                                                                                 | ydrates; | F = females; M = males                             | s; <b>n</b> = nu | mber of a | thletes; % | = CHO  | total e | nergy ra | tio.      |    |

Table III. Dietary data from athletes published ≤1970

nasts). We divided the athletic groups into classifications of endurance and nonendurance events, based on the characteristics of their training programmes as well as competitive event.

We summarised the data from these dietary surveys into 3 separate time periods. The few dietary surveys of athletes published in or before 1970 were included simply for their historical value. Table III presents all of the data from this era, including surveys undertaken during Olympic Games (reporting competition intake rather than routine intake). These surveys are particularly interesting since they predate most of the important scientific studies of sports nutrition as well as the advent of computerised dietary analysis programs. It is impressive that the data from the 1948 London Olympic Games were generated by collecting duplicate samples of the meals eaten by the athletes included in the survey,

and conducting chemical analyses of homogenates of this food.

Dietary surveys from the last 30 years were separated into 2 time periods: (i) 1971 to 1989 (tables IV to VII); and (ii) the 1990s (tables VIII to XI). The results of dietary surveys made during prolonged competitive events are provided in table XII, while surveys that could not be classified within our system are presented in table XIII.

# 3.1 How Well Do Athletes Appear to Be Meeting CHO Intake Guidelines?

Before examining the data presented in tables IV to XII, we must reflect on the limitations of the methods used to collect them. Our review shows that most surveys used a 3- to 4-day food diary with the quantification of intake described by household measures. Small participant numbers (10 or less)

#### Table IV. Dietary data from female endurance athletes published 1971-1989

| Population                                    | n   | Method                                           | Age | BM   | Energy          |            | СНО         | Reference                     |           |    |
|-----------------------------------------------|-----|--------------------------------------------------|-----|------|-----------------|------------|-------------|-------------------------------|-----------|----|
|                                               |     |                                                  | (y) | (kg) | MJ              | KJ/kg      | g           | g/kg                          | %E        |    |
| US collegiate swimmers                        | 9   | $4 \times 4d$ food record (household measures)   | 19  | 64   | 10.31 ± 2.23    | 161        | 315         | 4.9                           | $49\pm8$  | 78 |
| US collegiate swimmers                        | 20  | 3d food diary<br>(household measures)            |     |      | 12.98           |            | 333         |                               | 42        | 79 |
| US national level swimmers                    | 14  | 3d food diary<br>(household measures)            | 17  | 62   | $9.61\pm3.5$    | 155        | 318         | 5.1                           | $53\pm 6$ | 80 |
| Canadian national level<br>swimmers           | 10  | 3d food diary<br>(household measures)            | 16  | 62   | $8.64\pm2$      | 140        | $284\pm85$  | 4.6                           | $54\pm7$  | 81 |
| US collegiate swimmers                        | 19  | $2 \times 3d$ food diary (household measures)    | 19  | 63   | $10.42\pm2.3$   | 163        | $337\pm84$  | 5.3                           | 54        | 82 |
| Canadian collegiate swimmers                  | 6   | $2 \times 3d$ food diary (household measures)    | 22  | 62.5 | 10.33           | 165        | 334         | 5.4                           | 52        | 83 |
| Chinese elite swimmers                        | 3   | 3-5d weighed food diary                          | 20  | 65   | $19.21\pm0.72$  | $297\pm12$ | $405\pm58$  | $\textbf{6.2}\pm\textbf{0.9}$ | $35\pm5$  | 84 |
| Club level marathon runners                   | 19  | 4d food diary<br>(household measures)            | 29  | 53   | 9.59            | 182        | 248         | 4.7                           | 44        | 85 |
| Canadian collegiate distance runners          | 17  | 7d weighed food diary                            | 22  |      | $8.47\pm2.2$    |            | $252\pm56$  |                               | 48        | 86 |
| US national level marathon<br>runners         | 51  | 3d food diary<br>(household measures)            | 29  | 52   | $10.02\pm3.1$   | 193        | $323\pm109$ | 6.2                           | 55        | 87 |
| Dutch international level<br>distance runners | 18  | $2 \times 4$ -7d food diary (household measures) | 31  | 52   | 8.75            | 168        | 301         | 5.8                           | 50        | 88 |
| US collegiate distance runners                | 11  | 3d food diary<br>(household measures)            | 21  | 53   | $7.62\pm2.8$    | 144        | 268         | 5.0                           | $56\pm10$ | 89 |
| Dutch international level cyclists            | 21  | $3 \times 4$ -7d food diary (household measures) | 23  | 66   | 10.82           | 164        | 352         | 5.3                           | 52        | 88 |
| US national level & collegiate<br>cyclists    | 12  | 3d food diary<br>(household measures)            |     |      | 12.66 + 3.16    |            | 386         |                               | $51\pm7$  | 90 |
| International group of triathletes            | 10  | 3d food diary<br>(household measures)            | 39  | 57   | $10.34\pm4.19$  | 181        | 351 ± 180   | 6.2                           | 54        | 91 |
| US national team speed skaters                | 7   | 3d food diary<br>(household measures)            | 21  |      | $9.32 \pm 1.75$ |            | $349\pm84$  |                               | 63        | 92 |
| US collegiate rowers                          | 24  | 3d food diary<br>(household measures)            |     | 68   | 9.78            | 144        | 272         | 4                             | 46        | 93 |
| Dutch international level rowers              | 8   | $2 \times 4$ -7d food diary (household measures) | 23  | 70   | 12.98           | 186        | 374         | 5.4                           | 46        | 88 |
| US national team x skiers                     | 14  | $4 \times 3d$ food diary (household measures)    | 20  | 57   | 13.08           | 230        | 349         | 6.1                           | 43        | 93 |
| Weighted mean                                 | 293 |                                                  |     |      | 10.37           | 174        | 316         | 5.38                          | 50        |    |

**BM** = body mass; **CHO** = carbohydrates; n = number of athletes; **%E** = CHO : total energy ratio.

Sports Med 2001; 31 (4)

## Table V. Dietary data from female non-endurance athletes published 1971-1989

| Population                                      | n   | Method Ag                                       | Age   | BM   | Energy                            |              | СНО          |             |           | Reference |
|-------------------------------------------------|-----|-------------------------------------------------|-------|------|-----------------------------------|--------------|--------------|-------------|-----------|-----------|
|                                                 |     |                                                 | (y)   | (kg) | MJ                                | kJ/kg        | g            | g/kg        | %E        |           |
| US collegiate sprinters                         | 12  | 3d food diary (household measures)              | 20    | 55   | $\textbf{8.43} \pm \textbf{3.16}$ | 153          | 237          | 4.3         | $45\pm12$ | 89        |
| Dutch international level hockey<br>players     | 9   | 4-7d food diary (household measures)            | 24    | 62   | 9.0                               | 145          | 264          | 4.3         | 4.7       | 88        |
| US collegiate hockey players                    | 8   | $2 \times 3d$ food diaries (household measures) | 19    | 60   | $\textbf{8.18} \pm \textbf{1.57}$ | 136          | $228 \pm 44$ | 3.8         | 47        | 82        |
| US collegiate basketball players                | 19  | 1-3d food diary (household measures)            |       | 71   | 12.20                             | 172          | 348          | 4.9         | 46        | 79        |
| US collegiate basketball players                | 10  | 3d food diary (household measures)              | 19    | 72   | $\textbf{7.23} \pm \textbf{2.4}$  | 100          | $229 \pm 95$ | 3.2         | 51        | 94        |
| US collegiate lacrosse players                  | 7   | 3d food diary (household measures)              |       |      | 9.28                              |              | 257          |             | 50        | 79        |
| US collegiate volleyball players                | 31  | 1-3d food diary (household measures)            |       |      | 8.89                              |              | 271          |             | 49        | 79        |
| Dutch international level volleyball<br>players | 9   | 4-7d food diary (household measures)            | 23    | 66   | 9.24                              | 140          | 263          | 4.0         | 46        | 88        |
| Dutch international level handball<br>players   | 8   | 4-7d food diary (household measures)            | 22    | 63   | 8.97                              | 142          | 251          | 4.0         | 45        | 88        |
| US high school gymnasts                         | 13  | $2 \times 3d$ food diary (household measures)   | 15    | 50   | $\textbf{8.04} \pm \textbf{2.82}$ | 159          | $222\pm77$   | 4.4         | $46\pm4$  | 95        |
| US special school gymnasts                      | 97  | 3d food diary (household measures)              | 13    | 43   | 7.68                              | 178          | 220          | 5.1         | 49        | 96        |
| US junior elite gymnasts                        | 22  | 2d food diary (household measures)              | 11-14 | 31   | $\textbf{7.13} \pm \textbf{1.76}$ | 230          | $227\pm 64$  | 7.3         | $53\pm 6$ | 97        |
| US national level & collegiate<br>gymnasts      | 10  | 3d food diary (household measures)              |       |      | $8.09 \pm 1.66$                   |              | 237          |             | $49\pm5$  | 90        |
| US artistic gymnasts                            | 26  | 6d food diary (household measures)              | 12    | 38   | $\textbf{6.49} \pm \textbf{2.13}$ | 171          | 194          | 5.1         | $48\pm7$  | 98        |
| Chinese elite gymnasts                          | 5   | 3-5d weighed food diary                         | 18    | 45   | $9.61 \pm 1.4$                    | $213 \pm 29$ | $242 \pm 49$ | 5.4 + 1.1   | $42\pm9$  | 84        |
| Dutch international level gymnasts              | 11  | 4-7d food diary (household measures)            | 15    | 47   | 7.41                              | 158          | 246          | 5.2         | 53        | 88        |
| US collegiate gymnasts +<br>1 body builder      | 10  | 5d food diary (household measures)              | 19    | 54   | 7.28                              | 134          | 197          | 3.6         | 43        | 99        |
| Dutch international level body<br>builders      | 4   | 4-7d food diary (household measures)            | 25    | 56   | 6.16                              | 110          | 196          | 3.5         | 51        | 88        |
| US competitive body builders                    | 12  | 3d food diaries (household measures)            | 29    | 58   | $\textbf{6.81} \pm \textbf{2.3}$  | 120          | $208\pm60$   | 3.6         | $53\pm11$ | 100       |
| US competitive body builders                    | 6   | $4\times 3d$ food record (household measures)   | 18-30 | 57   | 5.91                              | 104          | 234          | 4.1         | 63        | 101       |
| Chinese elite throwers                          | 6   | 3-5d weighed food diary                         | 21    | 84   | $18.58\pm3.1$                     | $222\pm38$   | $386 \pm 57$ | $4.6\pm0.7$ | $35\pm5$  | 88        |
| US collegiate synchronised swimmers             | 15  | $4 \times 4d$ food diary (household measures)   | 19-20 | 66   | $9.54\pm3.2$                      | 144          | 292          | 4.2         | 49        | 78        |
| US national level and collegiate figure skaters | 29  | 3d food diary (household measures)              |       |      | $7.56\pm2.04$                     |              | 235          |             | $52\pm7$  | 90        |
| Italian Olympic level mixed skill sports        | 22  | Dietary history                                 | 19    | 53   | $11.59\pm2.2$                     | 217          | $306\pm87$   | 5.7         | 42        | 102       |
| Weighted mean                                   | 401 |                                                 |       |      | 8.42                              | 169          | 244          | 4.87        | 49        |           |

**BM** = body mass; **CHO** = carbohydrates; **n** = number of athletes; **%E** = CHO : total energy ratio.

#### Table VI. Dietary data from male endurance athletes published 1971-1989

| Population                                   | n  | Method                                           | Age   | BM   | Energy                             |            | СНО           |                               |           | Reference |
|----------------------------------------------|----|--------------------------------------------------|-------|------|------------------------------------|------------|---------------|-------------------------------|-----------|-----------|
|                                              |    |                                                  | (y)   | (kg) | MJ                                 | kJ/kg      | g             | g/kg                          | %E        |           |
| US national level speed skaters              | 10 | 3d food diary<br>(household measures)            | 22    |      | $16.49\pm3.67$                     |            | $553 \pm 177$ |                               | 56        | 92        |
| Dutch international level marathon skaters   | 5  | 4-7d food diary<br>(household measures)          | 33    | 72   | 16.05                              | 222        | 554           | 7.7                           | 55        | 88        |
| Scandinavian swimmers                        |    |                                                  |       |      | 15.71                              |            | 478           |                               | 51        | 103       |
| US national level swimmers                   | 13 | 3d food diary<br>(household measures)            | 22    | 80   | $\textbf{18.14} \pm \textbf{4.18}$ | 227        | 555           | 6.9                           | 49 ± 10   | 80        |
| Canadian national level swimmers             | 10 | 3d food diary<br>(household measures)            | 16    | 72   | $14.79\pm3.2$                      | $209\pm46$ | $456 \pm 126$ | 6.3                           | $51\pm5$  | 81        |
| Dutch international swimmers                 | 20 | 4-7d food diary<br>(household measures)          | 18    | 73   | 16.11                              | 221        | 486           | 6.7                           | 48        | 88        |
| Chinese elite swimmers                       | 3  | 3-5d weighed food diary                          | 22    | 74   | $24.82\pm3.3$                      | $334\pm46$ | $484\pm228$   | $\textbf{6.5}\pm\textbf{3.1}$ | $33\pm7$  | 88        |
| US national level & collegiate<br>swimmers   | 15 | 3d food diary<br>(household measures)            |       |      | $16.80\pm2.62$                     |            | 513           |                               |           | 90        |
| French national & regional level<br>cyclists | 32 | 7d food diary<br>(household measures)            | 23    | 68   | $14.48\pm2.58$                     | $214\pm38$ | 366           | 5.1                           | 40        | 104       |
| Irish Olympic team cyclists                  | 6  | 3d weighed food diary                            | 21    | 71   | $16.25\pm2.2$                      | 228        | 525           | 7.4                           | 52        | 105       |
| Dutch international level cyclists           | 14 | $3 \times 4$ -7d food diary (household measures) | 20    | 72   | 18.29                              | 253        | 663           | 9.2                           | 58        | 88        |
| US national level & collegiate<br>cyclists   | 18 | 3d food diary<br>(household measures)            |       |      | $17.32\pm3.67$                     |            | 476           |                               | $46\pm 5$ | 90        |
| German national team cyclists                | 9  | 3d semi-weighed food diary                       | 19-26 | 73   | 26.5                               | 363        | 795           | 10.9                          | 48        | 106       |
| International group of distance triathletes  | 19 | 3d food diary<br>(household measures)            | 44    | 75   | $15.14\pm5.82$                     | 202        | $506\pm222$   | 6.8                           | 54        | 91        |
| Australian national level triathletes        | 20 | 7d food diary<br>(household measures)            | 27    | 69   | $17.2\pm3.4$                       | $250\pm50$ | $627 \pm 152$ | 9.1                           | $60\pm8$  | 107       |
| Dutch international level triathletes        | 33 | 4-7d food diary<br>(household measures)          | 26    | 70   | 19.09                              | 272        | 612           | 8.7                           | 51        | 88        |
| Dutch Olympic team rowers                    | 8  | 7d food diary<br>(household measures)            |       | 87   | 17.31 ± 2.11                       | 199        | 467           | 5.4                           | 43        | 108       |
| US collegiate rowers                         | 27 | 1-3d food diary<br>(household measures)          |       | 85   | 16.91                              | 199        | 456           | 5.4                           | 44        | 79        |
| Dutch international level rowers             | 18 | $2 \times 4$ -7d food diary (household measures) | 22    | 77   | 14.59                              | 189        | 472           | 6.1                           | 52        | 88        |
| German national team rowers                  | 3  | 3d semi-weighed food diary                       | 18-23 | 88   | 25                                 | 284        | 812           | 9.2                           | 52        | 106       |
| US collegiate mountain climbers              | 12 | 2d food diary<br>(household measures)            |       |      | 16                                 |            | 411           |                               | 43        | 79        |
| Scandinavian X-runners                       |    |                                                  |       |      | 14.87                              |            | 408           |                               | 46        | 103       |

# table VI continued

were often encountered, and many surveys failed to describe any techniques aimed to minimise or standardise the errors in their methodological design. It also appears that some studies were undertaken without the involvement of trained nutritionists in the collection, entry or interpretation of their data.

Although the pooling of studies to describe overall trends adds strength in the form of increased participant numbers, it cannot overcome the problems of flawed study design. Furthermore, the differences in survey collection methods and in the databases used to estimate nutrient intakes mean that caution is needed when trying to compare or collate data from separate surveys. It is probable that under-reporting or atypical eating occurred across all studies, so that the reported intakes do not accurately represent the true habitual intakes of some of the athletes surveyed. However, it is difficult to determine the likely extent of these errors, other than to focus suspicion on dietary intakes that appear unrealistically low, or to come from groups that are documented to be conscious of bodyweight control and body image. Unfortunately, many of the studies included in this review did not question or explore their data in light of the limitations of their dietary survey technique.

We noted that studies published in the last decade tended to be more informative with regard to survey methodology and the discussion of data. This may reflect a better understanding of the issues of dietary surveys in recent times, as well as the publication interests and standards of the new journal *International Journal of Sport Nutrition and Exercise Metabolism*, in which a substantial number of the recent data appear. It is interesting that several recent articles have specifically discussed the benefits of using gram per kilogram nomenclature when setting or assessing CHO intake guidelines.<sup>[132,158]</sup>

Taken together, the dietary surveys reviewed here suggest that male athletes appear to be more successful than female athletes in achieving the CHO intake goals suggested in table I. The mean value for the self-reported CHO intakes across all surveys of male endurance athletes is  $\approx$ 7.5 g/kg/day,

| Carboł   |
|----------|
| ıydrate  |
| ! Intake |
| e of Atl |
| nletes   |

| Canadian collegiate distance runners                               | 35  | 7d food diary<br>(household measures)            | 22    |    | $12.62\pm2.84$  |            | $374\pm86$ |             | 47        | 86  |
|--------------------------------------------------------------------|-----|--------------------------------------------------|-------|----|-----------------|------------|------------|-------------|-----------|-----|
| US runners                                                         | 8   | 3d food diary<br>(household measures)            | 29    | 68 | $13.02\pm3.56$  | $200\pm57$ | 424        | 6.3         | $52\pm10$ | 109 |
| US national level & collegiate distance runners                    | 10  | 3d food diary<br>(household measures)            |       |    | $12.68 \pm 2.4$ |            | 372        |             | 49 ± 9    | 90  |
| Dutch international level runners                                  | 56  | $2 \times 4$ -7d food diary (household measures) | 30    | 69 | 13.28           | 193        | 417        | 6.1         | 50        | 88  |
| German national team distance runners                              | 10  | 3d semi-weighed food diary                       | 19-25 | 61 | 22.14           | 326        | 733        | 12          | 53        | 106 |
| US national team X skiers                                          | 13  | $4 \times 3d$ food diary (household measures)    | 22    | 73 | 18.70           | 256        | 498        | 6.8         | 43        | 93  |
| Canadian elite distance runners and X-skiers                       | 6   | 7d food diary<br>(household measures?)           | 22    | 73 | $18.97\pm0.2$   | 259        | 708        | $9.7\pm0.4$ | 62        | 110 |
| German national team biathletes                                    | 12  | 3d semi-weighed food diary                       | 15-17 | 65 | 21.2            | 326        | 636        | 9.8         | 48        | 106 |
| Italian Olympic level endurance athletes (incl. cycling, X-skiing) | 58  | Dietary history                                  | 25    | 70 | $18.13\pm4.79$  | 259        | 558 ± 122  | 7.9         | 49        | 102 |
| Weighted mean                                                      | 503 |                                                  |       |    | 16.56           | 236        | 506        | 7.29        | 49        |     |

**BM** = body mass; **CHO** = carbohydrates; n = number of athletes; %**E** = CHO : total energy ratio.

#### Table VII. Dietary intake from male non-endurance athletes published from 1971-1989

| Population                                                  | n  | Method                                            | Age   | BM   | Energy                            | Energy     |                                |             |           | Reference |
|-------------------------------------------------------------|----|---------------------------------------------------|-------|------|-----------------------------------|------------|--------------------------------|-------------|-----------|-----------|
|                                                             |    |                                                   | (y)   | (kg) | MJ                                | KJ/kg      | g                              | g/kg        | %E        |           |
| US collegiate American football players                     | 56 | 3d food diary (household measures)                |       | 95   | 20.23                             | 213        | 541                            | 5.7         | 44        | 79        |
| US collegiate American football players                     | 11 | 3d semi-weighed food diary (recorded by observer) | 20    | 108  | $15.02\pm3$                       | 139        | $329\pm86$                     | 3           | 39        | 111       |
| US senior high school American football<br>players          | 88 | 24h dietary recall                                | 15-18 | 76   | $14.06\pm6.65$                    | $200\pm87$ | $366 \pm 170$                  | 4.8         | 42        | 112       |
| US national level & collegiate American<br>football players | 55 | 3d food diary (household measures)                |       |      | $16.25\pm2.8$                     |            | 428                            |             | 46        | 90        |
| US collegiate American football players                     | 35 | 3d food diary (household measures)                | 20    | 99   | $15.87\pm3.75$                    | 160        | 443                            | 4.5         | 45        | 113       |
| Professional Australian Football layers                     | 54 | 7d food diary (household measures)                | 24    | 82   | $14.2\pm3$                        | $170\pm40$ | $\textbf{373} \pm \textbf{94}$ | 4.5         | $44\pm5$  | 114       |
| Swedish professional soccer players                         | 15 | 7d food diary (household measures)                | 24    | 74   | $\textbf{20.7} \pm \textbf{4.71}$ | 282        | $596 \pm 127$                  | 8.1         | $47\pm3$  | 115       |
| US collegiate soccer players                                | 8  | 3d food diary (household measures)                |       |      | 12.39                             |            | 320                            |             | 43        | 79        |
| US collegiate soccer players                                |    | 3d food diary (household measures)                | 20    | 72   |                                   |            |                                |             |           | 116       |
| conditioning on campus                                      | 17 |                                                   |       |      | 18.7                              | 260        | 596                            | 8.3         | 52        |           |
| season on campus                                            | 8  |                                                   |       |      | $15.92\pm2.69$                    | 221        | 487 ± 107                      | 6.8         | $52\pm11$ |           |
| season off campus                                           | 9  |                                                   |       |      | $12.79 \pm 4.89$                  | 178        | 306 + 118                      | 4.2         | $42\pm15$ |           |
| Dutch international level soccer players                    | 20 | 4-7d food diary (household measures)              | 20    | 74   | 14.3                              | 192        | 420                            | 5.6         | 47        | 88        |
| Dutch international level hockey players                    | 8  | 4-7d food diary (household measures)              | 27    | 75   | 13.58                             | 181        | 365                            | 4.9         | 43        | 88        |
| US collegiate basketball players                            | 38 | 1-3d food diary (household measures)              |       |      | 20.44                             |            | 528                            |             | 42        | 79        |
| US collegiate basketball players                            | 16 | 3d food diary (household measures)                | 19    | 83   | $14.87\pm4.51$                    | 179        | $437\pm158$                    | 5.3         | 47        | 94        |
| US national level & collegiate<br>basketball players        | 11 | 3d food diary (household measures)                |       |      | $17.04\pm3.2$                     |            | 448                            |             | $44\pm7$  | 90        |
| US collegiate lacrosse players                              | 20 | 3d food diary (household measures)                |       |      | 16.41                             |            | 470                            |             | 45        | 79        |
| Dutch international level water polo<br>players             | 30 | 4-7d food diary (household measures)              | 24    | 86   | 16.59                             | 194        | 467                            | 5.5         | 45        | 88        |
| US national level & collegiate baseball<br>players          | 11 | 3d food diary (household measures)                |       |      | $19.45\pm3.74$                    |            | 523                            |             | $45\pm11$ | 90        |
| Scandinavian shotput throwers                               |    |                                                   |       |      | 18                                |            | 452                            |             | 42        | 103       |
| US national level discus throwers                           | 16 | 24h dietary recall                                | 26    | 111  | $19.5\pm5$                        | 176        | 446 ± 153                      | 4           | 37        | 117       |
| Chinese elite throwers                                      | 6  | 3-5d weighed food diary                           | 25    | 109  | $\textbf{22.38} \pm \textbf{2.9}$ | $205\pm25$ | $450\pm52$                     | $4.1\pm0.5$ | $34\pm1$  | 84        |
| Swedish shot put throwers                                   |    |                                                   |       |      | 18                                |            | 452                            |             | 42        | 103       |

| US collegiate track and field athletes                                         | 7                         | 3d food diary (household measures)            |          |     | 14.75                              |              | 489                             |               | 55        | 79  |
|--------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|----------|-----|------------------------------------|--------------|---------------------------------|---------------|-----------|-----|
| US collegiate track athletes                                                   | 19                        | 1-3d food diary (household measures)          |          |     | 16.98                              |              | 484                             |               | 46        | 79  |
| US collegiate gymnasts                                                         | 10                        | 3d food diary (household measures)            |          |     | 8.69                               |              | 231                             |               | 44        | 79  |
| Chinese elite gymnasts                                                         | 4                         | 3-5d weighed food diary                       | 21       | 59  | $13.84\pm0.23$                     | $234\pm38$   | $357\pm77$                      | 6.1 ± 1.3     | $43\pm9$  | 84  |
| Chinese elite weight lifters                                                   | 10                        | 3-5d weighed food diary                       | 21       | 80  | $19.21\pm2.52$                     | $238 \pm 25$ | 431 ± 96                        | $5.4 \pm 1.2$ | 38 ± 8    | 84  |
| Dutch international level weight lifters                                       | 7                         | 4-7d food diary (household measures)          | 27       | 76  | 12.76                              | 167          | 320                             | 4.2           | 40        | 88  |
| US national level & collegiate weight lifters                                  | 28                        | 3d food diary (household measures)            |          |     | $15.2\pm3.9$                       |              | 392                             |               | $43\pm8$  | 90  |
| German national team weight lifters                                            | 15                        | 3d semi-weighed food diary                    | 15-19    | 95  | 31.35                              | 330          | 764                             | 8             | 39        | 106 |
| US collegiate body builders                                                    | 6                         | 3d food diary (household measures)            |          |     | 16.56                              |              | 350                             |               | 36        | 79  |
| South African competitive body builders                                        | 76                        | 7d food diary (household measures)            | 27       | 82  | $15.01\pm4.22$                     | 183          | $\textbf{320} \pm \textbf{132}$ | 3.9           | 34        | 118 |
| Canadian elite body builders                                                   | 6                         | 7d food diary (household measures)            | 24       | 80  | $20.07 \pm 0.2$                    | 251          | 592                             | $7.4\pm0.3$   | 49        | 110 |
| Dutch international level body builders                                        | 8                         | 4-7d food diary (household measures)          | 30       | 87  | 13.71                              | 157          | 424                             | 4.9           | 50        | 88  |
| US competitive body builders                                                   | 35                        | $2 \times 3d$ food diary (household measures) | 28       | 88  | 23.98 ± 10.45                      | 270          | $637\pm259$                     | 7.2           | 44        | 119 |
| US competitive bodybuilders                                                    | 7                         | 3d food diary (household measures)            | 28       | 91  | $15.04 \pm 4.86$                   | 165          | $457 \pm 148$                   | 5             | 52± 11    | 100 |
| Dutch international level judo participants                                    | 28                        | 4-7d food diary (household measures)          | 18       | 69  | 12.16                              | 177          | 376                             | 5.5           | 50        | 88  |
| US national level & collegiate judo<br>participants                            | 13                        | 3d food diary (household measures)            |          |     | $14.0\pm3.2$                       |              | 386                             |               | $46\pm 5$ | 90  |
| US collegiate wrestlers                                                        | 40                        | 1-3d food diary (household measures)          |          |     | 12.17                              |              | 340                             |               | 48        | 79  |
| US national level & collegiate wrestlers                                       | 10                        | 3d food diary (household measures)            |          |     | $9.0\pm3.0$                        |              | 291                             |               | $54\pm 6$ | 90  |
| German national team wrestlers                                                 | 20                        | 3d semi-weighed food diary                    | 19-22    | 85  | 18.78                              | 221          | 516                             | 6.1           | 44        | 106 |
| Japanese Sumo wrestlers                                                        | 60                        |                                               |          |     | 23.1                               |              | 780                             |               | 54        | 120 |
| US national level & collegiate figure skaters                                  | 15                        | 3d food diary (household measures)            |          |     | 11.11 ± 3.53                       |              | 312                             |               | 47 ± 9    | 88  |
| Italian Olympic level team and<br>combative sport players                      | 100                       | Dietary history                               | 23       | 75  | $15.68\pm3.06$                     | 209          | 444 ± 119                       | 6             | 45        | 102 |
| Italian Olympic level sprint events<br>(incl. Canoeing)                        | 71                        | Dietary history                               | 23       | 80  | $\textbf{17.49} \pm \textbf{3.83}$ | 222          | $498 \pm 154$                   | 6.2           | 46        | 103 |
| Italian Olympic level sprinters, throwers and jumpers                          | 14                        | Dietary history                               | 24       | 80  | $17.35\pm3.42$                     | 217          | $496\pm98$                      | 6.2           | 46        | 102 |
| Italian Olympic level mixed group of skill based athletes (incl. bob sledding) | 126                       | Dietary history                               | 25       | 73  | 14.3                               | 199          | 397                             | 5.5           | 44        | 102 |
| Weighted mean                                                                  | 1267                      |                                               |          |     | 16.45                              | 213          | 450                             | 5.71          | 44        |     |
| Weighted mean<br>BM = body mass: CHO = carbohydrates                           | 1267<br>5: <b>n</b> = nur | mber of athletes: <b>%E</b> = CHO : total en  | erav rat | io. | 16.45                              | 213          | 450                             | 5.71          | 44        |     |

| Population                                   | n   | Method                                        | Age | BM   | Energy                            |            | СНО          |                                 |           | Reference |
|----------------------------------------------|-----|-----------------------------------------------|-----|------|-----------------------------------|------------|--------------|---------------------------------|-----------|-----------|
|                                              |     |                                               | (y) | (Kg) | MJ                                | kJ/kg      | g            | g/kg                            | E%        |           |
| Swiss age group swimmers                     | 18  | 9d food diary<br>(household measures)         | 13  | 48   | 7.91 ± 1.86                       | $165\pm44$ | 253          | 5                               | 51 ± 7    | 121       |
| US collegiate swimmers                       | 10  | $3 \times 24h$ recall                         | 18  | 65   | $7.93 \pm 2.65$                   | 122        | $258\pm83$   | 4                               | 52        | 122       |
| US collegiate swimmers                       | 14  | 3d food diary<br>(household measures)         | 20  | 63   | $9.59 \pm 1.95$                   | 152        | $324 \pm 66$ | 5.1                             | 56        | 123       |
| US national level swimmers                   | 21  | 5d food diary<br>(household measures)         | 15  | 58   | $14.93\pm2.8$                     | 256        | 428 ± 110    | 7.4                             | 48        | 124       |
| US collegiate swimmers                       | 9   | 7d food diary<br>(household measures)         | 20  | 64   | $7.6 \pm 1.7$                     | 119        | $293\pm67$   | 4.6                             | 61        | 125       |
| British regional swimmers                    | 15  | 3d weighed food diary                         | 12  |      | 9.66                              |            | 313          |                                 | 52        | 126       |
| NZ age group swimmers                        | 11  | 4d weighed food diary                         | 13  | 56   | $8.9\pm0.6$                       | $158\pm67$ | $292\pm87$   | $5.5\pm2.5$                     | $56\pm 6$ | 127       |
| US collegiate X-country<br>runners           | 6   | 7d food diary<br>(household measures)         | 19  | 53   | $\textbf{6.96} \pm \textbf{2.4}$  | $135\pm49$ | 247          | 4.8                             | $57\pm8$  | 128       |
| Australian well-trained distance runners     | 11  | 7d weighed food diary                         | 33  | 51   | $\textbf{8.85} \pm \textbf{2.1}$  | 174        | $299\pm58$   | 5.9                             | 57        | 129       |
| US highly trained distance runners           | 9   | 6d food diary<br>(household measures)         | 26  | 52   | 9.17                              | 176        | 333          | 6.4                             | 59        | 62        |
| US trained distance runners                  | 10  | 3d weighed (?) food diary                     | 22  | 54   | $8.16\pm1.6$                      | $152\pm37$ | $296\pm68$   | 5.5                             | $60\pm8$  | 130       |
| US High school runners                       | 7   | $2 \times 7d$ food diary (household measure)  | 16  | 51   | $\textbf{7.99} \pm \textbf{1.88}$ | 157        | $238\pm48$   | 4.7                             | 48        | 131       |
| US collegiate X-runners                      | 10  | 4d food diary (household measures)            | 20  | 55   | $\textbf{8.31} \pm \textbf{1.84}$ | $152\pm33$ | 331 ± 70     | $\textbf{6.1} \pm \textbf{1.3}$ | $67\pm2$  | 132       |
| US state-level high school                   | 22  | 3d food diary                                 | 17  | 50   | 8.99                              | 175        | 283          | 5.5                             | 53        | 133       |
| distance runners                             |     | longitudinal                                  | 20  | 53   | 6.88                              | 130        | 253          | 4.7                             | 60        |           |
| Japanese national team dis-<br>tance runners | 7   | 3d food diary<br>(household measures)         | 24  | 47   | 11.37 ± 1.48                      | $244\pm37$ | $337\pm59$   | $7.2\pm1.4$                     | $51\pm5$  | 134       |
| Finnish international level<br>X-skiers      | 7   | $4 \times 7d$ food diary (household measures) | 25  | 58   | 11.79                             | 204        | 427          | 7.4                             | 58        | 135       |
| Swedish national X-skiers                    | 4   | 5d weighed food diary                         | 25  | 54   | $18.2\pm1.9$                      | $337\pm35$ | $666\pm69$   | $12.2\pm3$                      | 58        | 66        |
| Weighted mean                                | 213 |                                               |     |      | 9.42                              | 172        | 313          | 5.73                            | 55        |           |

**BM** = body mass; **CHO** = carbohydrates; **n** = number of athletes; **%E** = CHO : total energy ratio.

Sports Med 2001; 31 (4)

#### Table IX. Dietary data from female non-endurance athletes published from 1990

| Population                                        | n   | Method                                | Age | BM   | Energy                            |            | СНО                             | Reference   |           |     |
|---------------------------------------------------|-----|---------------------------------------|-----|------|-----------------------------------|------------|---------------------------------|-------------|-----------|-----|
|                                                   |     |                                       | (y) | (Kg) | MJ                                | KJ/kg      | g                               | g/kg        | %E        | _   |
| Swiss national gymnasts                           | 12  | 7d food diary<br>(household measures) | 12  | 35   | $\textbf{6.45} \pm \textbf{1.66}$ | $165\pm56$ | 205                             | 5.9         | $53\pm 6$ | 121 |
| US collegiate gymnasts                            | 26  | Food frequency<br>questionnaire       | 20  | 54   | $5.77\pm2.3$                      | 107        | $180\pm60$                      | 3.3         | 50        | 136 |
| US national artistic gymnasts                     | 29  | 3d food diary<br>(household measures) | 15  | 49   | 7.01 ± 2.27                       | 143        | $283 \pm 96$                    | 5.8         | 66        | 137 |
| South African national throwers                   | 10  | 7d food diary<br>(household measures) | 22  | 88   | $9.28\pm2.0$                      | $112\pm28$ | 257                             | 3           | 46 ± 8    | 138 |
| Japanese national team throwers                   | 8   | 3d food diary<br>(household measures) | 25  | 67   | $10.94\pm2.36$                    | $167\pm39$ | $336\pm58$                      | 5.1 ± 1.1   | $54\pm3$  | 134 |
| Australian internationally<br>ranked surfers      | 10  | 5d food diary<br>(household measures) | 23  | 58   | $\textbf{8.40} \pm \textbf{1.83}$ | 141        | $276\pm72$                      | 4.8 ± 1.5   | $53\pm5$  | 139 |
| US collegiate volleyball<br>players               | 12  | $3 \times 24h$ dietary recall         | 20  | 66   | $\textbf{6.73} \pm \textbf{2.4}$  | 102        | $216 \pm 69$                    | 3.3         | 51        | 122 |
| US collegiate basketball<br>players               | 9   | $3 \times 24h$ dietary recall         | 20  | 70   | $\textbf{7.52} \pm \textbf{3.64}$ | 109        | $\textbf{227} \pm \textbf{104}$ | 3.3         | 48        | 122 |
| Turkish handball players                          | 10  | 3d food diary<br>(household measures) | 22  | 62   | 7.3                               | 118        | 229                             | 3.7         | 53        | 140 |
| US collegiate hockey<br>players                   | 9   | 7d food diary<br>(household measures) | 19  | 64   | $\textbf{6.32} \pm \textbf{1.7}$  | $100\pm26$ | 213                             | 3.4         | $54\pm8$  | 128 |
| US collegiate tennis players                      | 4   | 7d food diary<br>(household measures) | 19  | 53   | $\textbf{6.96} \pm \textbf{2.2}$  | $130\pm31$ | 213                             | 4           | $49\pm3$  | 128 |
| US collegiate golf players                        | 5   | 7d food diary<br>(household measures) | 20  | 61   | $8.45 \pm 1.5$                    | $147\pm29$ | 253                             | 4.2         | $48\pm7$  | 128 |
| Japanese national team<br>middle distance runners | 4   | 3d food diary<br>(household measures) | 18  | 47   | 11.54 ± 2.29                      | $245\pm50$ | $335\pm42$                      | $7.1\pm0.9$ | $50\pm5$  | 134 |
| Japanese national team sprinters                  | 11  | 3d food diary<br>(household measures) | 20  | 52   | $10\pm2.2$                        | $192\pm46$ | $305\pm79$                      | $5.8\pm1.6$ | $53\pm5$  | 134 |
| Japanese national team<br>jumpers                 | 4   | 3d food diary<br>(household measures) | 21  | 54   | $\textbf{8.28} \pm \textbf{2.21}$ | $152\pm37$ | $244\pm60$                      | $4.5\pm1$   | 51 ± 3    | 134 |
| Weighted mean                                     | 163 |                                       |     |      | 7.56                              | 125        | 237                             | 4.46        | 54        |     |

**BM** = body mass; **CHO** = carbohydrates; **n** = number of athletes; **%E** = CHO : total energy ratio.

## Table X. Dietary data from male endurance athletes published from 1990

| Population                                                      | n  | Method                                        | Age | e BM | Energy           |            | СНО           |             |           | Reference |
|-----------------------------------------------------------------|----|-----------------------------------------------|-----|------|------------------|------------|---------------|-------------|-----------|-----------|
|                                                                 |    |                                               | (y) | (Kg) | MJ               | KJ/kg      | g             | g/kg        | %E        |           |
| US international triathlete                                     | 1  | 7d food diary<br>(household measures)         | 24  | 74   | 28.8             | 389        | 1014          | 13.7        | 59        | 141       |
| US highly trained runners, triathletes, biathletes              |    | 7d weighed food diary                         |     |      |                  |            |               |             |           | 142       |
| adequate eaters                                                 | 4  |                                               | 27  | 68.5 | $18.91 \pm 4.52$ | 280        | $659\pm233$   | $9.8\pm3.8$ | 54 ±7     |           |
| small eaters                                                    | 6  |                                               | 26  | 67.2 | $11.86\pm3.22$   | 180        | $468 \pm 149$ | $7\pm2.4$   | $62\pm7$  |           |
| French national and international level middle distance runners | 6  | $2\times7d$ weighed food diary                | 22  | 64   | 11.9             | 190        | 352           | 5.5         | 47        | 143       |
| US elite distance runners                                       | 17 | $3 \times 3d$ food diary (household measures) | 26  | 66   | 13.11 ± 4        | 201        | $401\pm140$   | 6.1         | 48        | 144       |
| Australian national level marathon runners                      | 19 | 7d food diary<br>(household measures)         | 30  | 64   | $14.9\pm2.8$     | $230\pm40$ | 487 ± 111     | 7.6         | $52\pm5$  | 145       |
| Australian well-trained distance runners                        | 12 | 7d weighed food diary                         | 38  | 69   | $14.58\pm2.65$   | 211        | $482\pm131$   | 7           | 54        | 129       |
| Scots well-trained distance runners                             | 6  | 7d weighed food diary                         | 32  | 58   | 13.8             | 238        | 449           | 7.7         | 52        | 146       |
| South African distance runners                                  |    | Food frequency questionnaire                  |     |      |                  |            |               |             |           | 147       |
| elite black                                                     | 11 |                                               |     | 56   | $13\pm5.49$      | $260\pm63$ | 432           | 7.8         | 56        |           |
| elite white                                                     | 9  |                                               |     | 70   | $14.34\pm4.75$   | $207\pm75$ | 437           | 6.2         | 51        |           |
| US collegiate X-runners                                         | 14 | 4d food diary<br>(household measures)         | 19  | 64   | $15.17\pm3.45$   | $238\pm55$ | $504 \pm 136$ | $7.9\pm2.2$ | $55\pm 6$ | 132       |
| Italian national level runners                                  | 35 | 7d food diary<br>(household measures)         | 27  | 62.7 | $14.03\pm0.94$   | 230        | $502\pm36$    | 8           | 60        | 148       |
| US collegiate X-runners                                         | 12 | $2 \times 4d$ food diary (household measures) | 20  | 66   | $13.58\pm2.46$   | 206        | $497 \pm 134$ | 7.5         | 61        | 149       |
| Japanese national team distance runners                         | 8  | 3d food diary<br>(household measures)         | 25  | 60   | $14.32\pm2.11$   | $229\pm18$ | $382 \pm 19$  | $7.1\pm0.8$ | $52\pm5$  | 134       |
| Finnish international level X-skiers                            | 5  | $4 \times 7d$ food diary (household measures) | 27  | 73   | 15.88            | 217        | 576           | 7.9         | 58        | 135       |
| Italian national level X-skiers                                 | 73 | 7d food diary<br>(household measures)         | 27  | 67.5 | 14.45 ± 1.89     | 210        | 499 ± 38      | 7.4         | 58        | 148       |
| Swedish national team X-skiers                                  | 4  | 4d weighed food diary                         | 26  | 75   | $30.2\pm4.6$     | 402        | 1095          | 14.6        | 58        | 66        |
| US collegiate lightweight rowers                                | 13 | 24h dietary recall                            | 19  | 71   | $11.58\pm5.97$   | 163        | 492           | 6.9         | 71 ± 10   | 150       |

#### table X continued

which falls into the lower end of the daily CHO intakes recommended for the typical training programmes of these athletes. Similarly, male nonendurance athletes reported a mean CHO intake across all studies of 5.5 g/kg/day, which is at the lower end of their recommended intake range. From the dietary survey literature, it would be reasonable to expect that these values underestimate the actual CHO intakes of these athletes by 10 to 20%. Therefore, it is likely that the true CHO intakes of male endurance athletes were 8.0 to 8.7 g/kg/day (1971 to 1989) and 8.4 to 9.1 g/kg/day (1990 to 1999). Similarly, the true intakes of nonendurance athletes were likely to be 5.9 to 6.4 g/kg/day and 6.3 to 6.8 g/kg/day, respectively, for the 2 periods. Thus, the typical male athlete appears to be within reach of their recommended CHO intakes, even in the case of endurance athletes who have higher CHO intake targets.

Of course, across the range of surveys of male endurance athletes, there are groups who report higher intakes of CHO and others whose apparent CHO intakes fall below the recommended intake range for their likely needs. This is also true of male nonendurance athletes. Given the large standard deviations of the absolute CHO intake values, it is likely that even within a group of athletes who appear to meet their general CHO intake targets, there are individuals who consume less CHO than these guidelines.

It should also be noted that the CHO intake guidelines are sufficiently flexible to cover a range of fuel requirements, and the suitability of the intake of individuals or groups cannot be measured precisely against these goals. As in all areas of nutrition, judgements of inadequacy or deficiency cannot be made from a single piece of evidence, particularly when it is provided by a food record or other dietary survey tool. Rather, such a decision can only be made for individual athletes, by assessing their total nutritional goals and dietary practices from various sources of information. Assessment of the training load, training performances and ability to recover between sessions over a pe-

| US collegiate cyclists                | 14                | 5d weighed food diary                         | 23           | 69       | $17.40\pm2.9$    | 251        | $609 \pm 114$ | 8.8         | $58\pm8$ | 151 |
|---------------------------------------|-------------------|-----------------------------------------------|--------------|----------|------------------|------------|---------------|-------------|----------|-----|
| Italian national level cyclists       | 18                | 7d food diary<br>(household measures)         | 30           | 68.6     | $16.26\pm1.89$   | 240        | $562\pm48$    | 8.2         | 59       | 148 |
| US national level swimmers            | 22                | 5d food diary<br>(household measures)         | 16           | 77       | $21.83 \pm 2.97$ | 282        | $600\pm99$    | 7.7         | 46       | 124 |
| New Zealand age group swimmers        | 9                 | 4d weighed food diaries                       | 13           | 56       | $12.9\pm3$       | $230\pm58$ | $404\pm88$    | $7.3\pm1.7$ | $55\pm7$ | 127 |
| British regional swimmers             | 15                | 3d weighed food diary                         | 12           |          | 10.7             |            | 337           |             | 50       | 126 |
| US collegiate swimmers                |                   | 2d food diary<br>(household measures)         | 19           |          |                  |            |               |             |          | 152 |
| pre-study                             | 24                |                                               |              | 75       | $15.3\pm3.9$     | 204        | $501 \pm 141$ | 6.7         | 55       |     |
| ↑ training load                       | 11                |                                               |              | 72       | 17.7 + 3         | 246        | 600 + 126     | 8.3         | 57       |     |
| Canadian international level swimmers | 9                 | $5 \times 2d$ food diary (household measures) | 23           | 76       | 19.16            | 252        | 718           | 9.6         | 60       | 153 |
| Weighted mean                         | 377               |                                               |              |          | 15.13            | 227        | 508           | 7.62        | 56       |     |
| BM = body mass; CHO = carbohydrate    | es; <b>n</b> = nu | umber of athletes; %E = CHO :                 | total energy | y ratio. |                  |            |               |             |          |     |

Carbohydrate Intake of Athletes

| Population                                        | n   | Method                                    | Age | BM   | Energy           |            | СНО                            | Reference   |           |     |
|---------------------------------------------------|-----|-------------------------------------------|-----|------|------------------|------------|--------------------------------|-------------|-----------|-----|
|                                                   |     |                                           | (y) | (kg) | MJ               | MJ/kg      | g                              | g/kg        | %E        |     |
| Italian national level roller skiers              | 33  | 7d food diary<br>(household measures)     | 26  | 70   | $13.92 \pm 1.23$ | 200        | $488\pm51$                     | 7           | 58        | 148 |
| Italian national level ice hockey<br>players      | 20  | 7d food diary<br>(household measures)     | 24  | 73   | $14.25\pm1.12$   | 190        | $456\pm38$                     | 6.5         | 53        | 148 |
| Italian professional soccer players               | 33  | 7d dietary recall<br>(household measures) | 26  | 76   | $12.81\pm2.37$   | 169        | 449                            | 5.9         | 56        | 154 |
| Danish professional soccer players                | 7   | 10d food diary<br>(household measures)    | 23  | 77   | 15.7             | 204        | 426                            | 5.5         | 46        | 155 |
| Italian national level soccer players             | 16  | 7d food diary<br>(household measures)     | 25  | 74   | $13.44 \pm 1.48$ | 180        | $454\pm32$                     | 6.1         | 57        | 148 |
| talian professional soccer players                | 25  | 4d food diary<br>(household measures)     | 25  | 71   | $15.26\pm1.81$   | 213        | 532                            | 7.4         | 56        | 156 |
| Puerto Rico Olympic team soccer<br>players        | 8   | 12d food diary<br>(household measures)    | 17  | 63   | $16.52\pm4.48$   | $260\pm50$ | $526\pm62$                     | 8.3         | $53\pm 6$ | 157 |
| Professional Australian football players          | 40  | 4d food diary<br>(household measures)     | 23  | 86   | $13.2\pm2.5$     | $154\pm28$ | $415\pm110$                    | $4.8\pm1.3$ | $52\pm9$  | 158 |
| talian national level alpine skiers               | 7   | 7d food diary<br>(household measures)     | 23  | 75   | $14.77\pm1.48$   | 200        | $475\pm31$                     | 6.3         | 54        | 148 |
| South African national level throwers             | 20  | 7d food diary<br>(household measures)     | 22  | 99   | $14.61\pm3.27$   | $152\pm36$ | 358                            | 3.6         | 41 ± 7    | 138 |
| Japanese national team throwers                   | 2   | 3d food diary<br>(household measures)     | 31  | 104  | $15.01\pm2.79$   | $144\pm20$ | $429\pm81$                     | $4.1\pm0.6$ | $55\pm7$  | 134 |
| talian body builders – steroid users              | 14  | 4d food diary<br>(household measures)     | 27  | 82   | 11.27 ± 11.58    | 137        | 331                            | 4           | $47\pm52$ | 159 |
| Italian body builders – non-users                 | 17  | 4d food diary<br>(household measures)     | 25  | 78   | $13.69\pm13.77$  | 176        | 436                            | 5.6         | $51\pm23$ | 159 |
| US state and regional bodybuilders                | 14  | 3d food diary<br>(household measures)     | 26  | 93   | $18.68\pm5.88$   | 201        | $544 \pm 193$                  | 5.8         | 49        | 160 |
| talian well-trained body builders                 | 20  | 4d food diary<br>(household measures)     | 25  | 77   | $15.4\pm4.34$    | 200        | 531                            | 6.9         | 55        | 156 |
| Australian national level weightlifters           | 19  | 7d food diary<br>(household measures)     | 22  | 84   | $15.2\pm5$       | 190 ± 60   | $\textbf{373} \pm \textbf{94}$ | 4.8         | $42\pm 5$ | 145 |
| Japanese national team middle<br>distance runners | 4   | 3d food diary<br>(household measures)     | 24  | 63   | $14.32\pm2.11$   | 229 ± 18   | $383 \pm 19$                   | $6.2\pm0.7$ | $49\pm7$  | 134 |
| Japanese national team sprinters                  | 10  | 3d food diary<br>(household measures)     | 22  | 67   | $11.09 \pm 1.52$ | 167 ± 33   | $340\pm57$                     | 5.1 ± 1     | $54\pm4$  | 134 |
| Japanese national team jumpers                    | 4   | 3d food diary<br>(household measures)     | 26  | 69   | $11.97 \pm 1.16$ | $174\pm25$ | $359\pm51$                     | $5.2\pm1$   | $54\pm5$  | 134 |
| Weighted mean                                     | 313 | . ,                                       |     |      | 14.13            | 183        | 446                            | 5.81        | 52        |     |

#### Insert table XII here

riod of time can help to identify whether fuel needs are being met.

Female athletes report lower CHO intakes than male athletes, principally as a result of lower total energy intakes. At mean values of 5.5 g/kg/day for endurance athletes and 4.7 g/kg/day for nonendurance athletes, the apparent CHO intakes of these women fall below their respective CHO intake guidelines. Mean values for energy intake per kg body mass of both endurance and nonendurance female athletes were considerably lower than that of their male counterparts. For example, the mean reported energy intake for female athletes was 170 kJ/kg compared with 230 kJ/kg for male endurance athletes. These values remain lower even when allowances are made for differences in lean body mass between genders, and are apparent in the surveys from the 1990s as well as from the earlier periods. These discrepancies are puzzling if we assume that female endurance athletes share similar training loads to their male competitors (at least over the last decade) and that the energy expenditure of these training programmes is considerable.

There are a number of scenarios to explain the apparent energy discrepancies of female endurance athletes, which have been the topic of various studies<sup>[62-65,130]</sup> or reviews.<sup>[172]</sup> The first possibility is that these athletes actually consume less energy over prolonged periods because they are, or have become, metabolically efficient and have reduced their true energy needs. Although this hypothesis has been raised because of the strikingly consistent reports of low energy intake in female endurance athletes, studies have failed to find evidence that significant metabolic adaptations occur.[62-65,130] Nevertheless. many female endurance athletes appear to undertake repeated periods of energy restriction and negative energy balance in the desire to achieve or maintain the low body fat levels believed to be necessary for optimal performance. It is likely that these athletes become conscious of their dietary patterns or body composition goals when taking part in dietary surveys, and consequently they undereat or underreport their intake during these observation periods. Energy balance studies of female athletes, par-

#### Table XII. Dietary data from competition stage events >5d

| Population                                                                  | n Method |                                                                         | Age   | e BM | Energy        | CHO        | Reference |           |        |     |
|-----------------------------------------------------------------------------|----------|-------------------------------------------------------------------------|-------|------|---------------|------------|-----------|-----------|--------|-----|
|                                                                             |          |                                                                         | (y)   | (kg) | MJ            | kJ/kg      | g         | g/kg      | %E     |     |
| Long distance solitary sailors:<br>4 stages @ 2-5d                          | 11M      | Weighed food inventory for each stage<br>(total = 13d) kept by observer | 29-42 | 74   | $18.53\pm2.3$ | $259\pm36$ | 551       | 7.3 ± 1.2 | 51 ± 4 | 161 |
| Professional cyclists Tour de l'Avenir stage race                           | 4M       | 4-7d food diary (household measures)                                    | 24    | 74   | 23.29         | 316        | 873       | 11.8      | 60     | 88  |
| Professional cyclists in Tour de France stage race: 22d, 4000km             | 5M       | 22d food diary (household measures)                                     |       | 69   | $24.2\pm5.3$  | 352        | 849       | 12.3      | 61     | 18  |
| Elite professional cyclists in Tour of Spain, 3600km, 21d                   | 10M      | 3d weighed food diary kept by observer                                  | 28    | 71   | 23.5          | 352        | 841       | 12.6      | 60     | 162 |
| US cyclists in 11d, 500km stage race                                        | 3F       | 11d food diary (household measures)<br>partially kept by observer       | 26    | 60   | 10.99         | 188        | 343       | 5.8       | 52     | 163 |
| US ultradistance runners in 20d, 500km stage race (1982 Hawaiian Foot race) | 15M      | 8d food diary (household measures)                                      | 36    | 69   | 18.43         | 267        | 564       | 8.2       | 49     | 164 |
| Greek ultradistance runner in 960km,<br>5d non-stop race                    | 1M       | Food diary (weighed? kept by observer?) throughout race (5d)            | 28    | 64   | 49.8          | 778        | 2640      | 41        | 95     | 165 |
| Australian ultradistance runner in 1005km,<br>9d non-stop race              | 1M       | 9d food diary (household measures) kept by observer                     | 38    | 55   | 24.96         | 454        | 947       | 16.8      | 64     | 166 |
| Weighted mean                                                               | 50       |                                                                         |       |      | 20.74         | 305        | 706       | 10.26     | 55     |     |

#### Insert table XIII here

ticularly endurance athletes and those in 'aesthetic sports', where lean body physique is important, have found evidence of one or both of these behaviours.<sup>[62-65,130]</sup>

If under-reporting is the major contributor to energy discrepancies, the true CHO intakes of female athletes will be higher than estimated from the present overview of surveys. However, it is also likely that moderate energy restriction occurs either periodically or over the long term, which limits total CHO intake. This pattern will vary between female athletes or over time in the same athletes. Therefore, while we may feel less confident of the reported CHO intake values of female athletes in the present literature, it is reasonable to conclude that female athletes have greater difficulty meeting CHO intake guidelines, particularly the higher intakes recommended for endurance athletes.

There are few data concerning the reported dietary intakes of athletes who undertake competition events lasting 5 days or more. However, the available studies tend to show higher CHO intakes than achieved in the routine training diet, and it is noted that male athletes undertaking extreme exercise loads associated with cycling or running stage races generally achieve the CHO guidelines suggested in table I. This appears to occur as a result of higher energy intakes as well as a modest increase in the percentage of energy contributed by CHO in the diet.

If the traditional CHO intake guidelines, based on CHO : total energy ratios, are used to judge the adequacy of the self-reported intakes of athletes, a different pattern emerges. Overall, males and female athletes appear to choose diets providing 50 to 55% of total energy from CHO, with the trend towards a greater CHO ratio in endurance athletes compared with nonendurance athletes, and greater energy intake over the past decade. Therefore, the typical modern endurance athlete appears to choose dietary patterns that are more closely aligned to healthy eating guidelines than their sedentary counterparts, according to recent population surveys in Western countries that report mean values for

# Table XIII. Dietary data from miscellaneous surveys

| Population                                                                  | n                    | Method                                 | Age<br>(y)       | BM        | Energy                           |       | СНО           |           |          | Reference |
|-----------------------------------------------------------------------------|----------------------|----------------------------------------|------------------|-----------|----------------------------------|-------|---------------|-----------|----------|-----------|
|                                                                             |                      |                                        |                  | (kg)      | MJ                               | kJ/kg | g             | g/kg      | %E       |           |
| Internationally competitive triathletes                                     | 4M, 2F               | $2 \times 7d$ food diaries             | 31               | 69        |                                  |       |               |           |          | 167       |
| precounselling                                                              |                      | (household measures)                   |                  |           | $9.69\pm0.63$                    | 138   | $344 \pm 156$ | $4.9\pm2$ | $59\pm5$ |           |
| postcounselling                                                             |                      |                                        |                  |           | $16.69\pm1.78$                   | 238   | $650\pm118$   | $9.3\pm2$ | $65\pm4$ |           |
| Austrian top athletes<br>(mixed endurance and nonendurance athletes)        | 27M, 10F             | 7d food diary<br>(household measures?) | 23               | 71        | 14.55                            | 205   | 394           | 5.6       | 46       | 168       |
| US collegiate athletes<br>(mixed endurance & nonendurance sports)           |                      | 24h recall                             |                  |           |                                  |       |               |           |          | 169       |
| untreated                                                                   | 29                   |                                        | 20               | 62        | $\textbf{7.47} \pm \textbf{2.7}$ | 120   | 233           | 3.8       | $0\pm10$ |           |
| treated group pre-education                                                 | 10                   |                                        |                  | 59        | $\textbf{7.2} \pm \textbf{4.4}$  | 122   | 216           | 3.7       | $48\pm8$ |           |
| treated group posteducation                                                 | 10                   |                                        |                  |           | $7.4\pm3.6$                      | 121   | 273           | 4.5       | 59 ± 11  |           |
| US distance: international and recreational<br>distance runners             | 11M, 11F             | Food diary                             |                  | 66        | 12.59                            | 191   | 300           | 4.5       | 40       | 170       |
| French collegiate mixed athletes<br>(wrestling, handball and cross country) | 55                   | 7d weighed food diary                  | 20               | 71        | $12.6\pm0.6$                     | 178   | $356\pm22$    | 5         | 47 ± 2   | 171       |
| Italian Olympic level female endurance and<br>nonendurance sports athletes  | 15F                  | Dietary history                        | 21               | 56        | $13.42\pm2.9$                    | 238   | $374 \pm 146$ | 6.7       | 45       | 102       |
| Weighted mean                                                               |                      |                                        |                  |           | 11.74                            | 175   | 337           | 5.03      | 48       |           |
| BM = body mass; CHO = carbohydrates; F = fer                                | males; <b>M</b> = ma | ales; <b>n</b> = number of athlete     | s; <b>%E</b> = ( | CHO : tot | tal energy ratio.                |       |               |           |          |           |

CHO: total energy ratios of young and middleaged adults of about 46 to 47%.<sup>[173-175]</sup>

These mean values, however, fall short of the CHO: total energy ratios that are outlined in the traditional sports nutrition guidelines reviewed in section 1. Judged on this basis alone, the dietary patterns of many groups of male endurance athletes (or individual athletes) would be considered inadequate. However, we have shown that many of these athletes are likely to be achieving their muscle fuel requirements when judged on the basis of grams CHO per kilogram body mass. Conversely, some female endurance athletes appear to be achieving adequate intakes of dietary CHO based on the energy contribution, but fall well below targets based on gram per kilogram guidelines.

This conflict is shown more clearly by examining the relationship between intake of CHO (g/kg) and the proportion of dietary energy contributed by CHO from the dietary surveys. Figure 1 plots this correlation using mean values from all of the dietary surveys of male and female endurance athletes reviewed here. The limitations of these selfreported data are again acknowledged, as well as our failure to weight each study according to the number of participants and the spread of data around the mean values. However, the striking feature that emerges is an apparent gender difference in the relationship between absolute intakes of CHO and the total energy contribution from dietary CHO intake. In male endurance athletes there is a strong positive correlation; that is, athletes who change their dietary mix to increase the contribution from CHO-rich foods are likely to increase their success in meeting CHO intake guidelines (g/kg). By contrast, there is no relationship between the CHO: total energy ratio in the diets reported by female endurance athletes and their total CHO intake (g/kg body mass). A high CHO: total energy ratio does not necessarily ensure that the typical female athlete will increase her total CHO intake or meet the CHO guidelines based on grams per kilogram body mass. Total energy intake presents the confounding variable in this relationship. It is possible for the diet of a female athlete to have a high CHO: total energy ratio through the athlete's restricted fat intake and reduced total energy intake. In this scenario, CHO intake based on grams per kilogram body mass may still be well below the daily CHO guidelines for athletes. It appears that female athletes require more complex and individualised nutrition education messages to improve their CHO intakes. Such messages may include encouragement to soften the restrictions on total energy intake to allow for increased amounts of CHO-rich foods and drinks.

# 3.2 Have CHO Intakes Increased Over Time?

To examine whether CHO intakes have increased over time we plotted CHO intake as a percentage of total energy intake (fig. 2), and as intake per



Fig. 1. Mean values from dietary surveys of female (top) and male (bottom) endurance athletes plotted against time: reported carbohydrate (CHO) intake versus percentage of total energy.



Fig. 2. Mean values from dietary surveys of female (top) and male (bottom) endurance athletes plotted against time: reported carbohydrate (CHO) intake (percentage of energy).

kilogram of the athlete's body mass (fig. 3), against the year of publication of surveys from male and female endurance athletes. We recognise that the groups of athletes who have been surveyed have not been randomly selected. Therefore, it is possible that there is a bias over time towards particular groups of athletes who may be more or less successful in their nutritional practices. Nevertheless, figure 2 shows that athletes appear to have increased the proportion of CHO in their diets over the past decades during which dietary survey literature is available. This increase occurs both for male and female endurance athletes and is similar in the direction but slightly ahead of the change in intake reported in general population studies.[173-175] Figure 3 shows that this dietary change has caused a trend towards higher intakes of CHO per kilogram body mass for both male and female endurance athletes; however, the increase over time is not statistically significant.

# 4. Do Athletes' Eating Practices Demonstrate Optimal Intake?

The opening arguments in the present article proposed that competitive athletes would self-select, or have access to information promoting, the diet that would best enhance their performance. However, there are several arguments against accepting the principle that top athletes eat an optimal diet, as well as the specific idea that the reported CHO intakes summarised in this review are ideal.

First, in real life, we observe that athletes utilise a mixture of science, superstition, circumstance and popular belief in all aspects of their preparation. Trial and error is a slow and inexact teacher, and it may not lead the athlete to optimal practice in all areas.<sup>[176]</sup> Since nutrition plays an important but facilitatory role in sports performance, it is likely that some athletes are successful in spite of, as well as because of, their dietary practices. Second, although the dietary surveys reviewed here included some top competitors within their samples, the dietary intakes of most of the world's best athletes remain unknown. For example, little is known of the nutritional practices of the Kenyan runners who dominate middle and distance running, although there are anecdotal reports that the native diet is heavily focused on CHO-rich grains.<sup>[177]</sup> Finally, dietary surveys do not have the power to test the effect of dietary intake on performance. Although descriptive studies may, within limits, identify varying CHO intakes within and across groups, they are not able to test how much this contributes to the performance of individuals or groups.

#### 4.1 Factors Causing Suboptimal CHO Intake

Admittedly, with the majority of sports nutrition education promoting high CHO diets, it is curious that a modern athlete would fail to meet the CHO intake goals outlined in table I. However, there are a number of factors that can interfere with the achievement of such targets, particularly with the



Fig. 3. Mean values from dietary surveys of female (top) and male (bottom) endurance athletes plotted against time: reported carbohydrate (CHO) intake [grams per kilogram body mass (BM)].

higher intakes recommended for endurance athletes, and these include:

- · restricted energy intake
- inadequate practical nutrition skills or food composition knowledge
- background dietary practices and food culture of the country are inadequate in terms of CHO intake
- poor availability of CHO-rich foods in the immediate eating environment
- gastrointestinal limits to bulky, high fibre food intake
- fad diets promoting lower CHO intakes (e.g. the Zone diet)
- chaotic lifestyle and constant travel commitments. The presence of several of these factors are ev-

ident from the dietary survey literature. Total energy intake represents the most important individ-

ual factor in determining CHO intake. Athletes who consume high energy intakes increase their opportunity to meet their CHO intake requirements, especially when these are above 7 g/kg/day. These absolute requirements can be met by a diet providing 50 to 70% of energy from CHO as long as the total energy intake is sufficiently high. Endurance athletes with low to moderate energy intakes may be unable to achieve CHO intakes within the recommended range even when the CHO: total energy ratio of their diets is around 70 to 75% of energy intake. Yet, it is difficult to further increase the CHO: total energy ratio for prolonged periods without compromising other nutrient intake goals.

Several individual studies have showed the importance of total energy intake in the achievement of CHO intake goals. Wiita and Stombaugh<sup>[133]</sup> undertook a longitudinal study of female distance runners over a 3-year period. Although the runners showed an increased awareness of CHO-rich foods, and self-reported food diaries suggested an increased ratio of CHO energy over the 3-year period (60% vs 54%), the actual quantity of CHO consumed decreased because of a large drop in reported energy intake. Thompson et al.<sup>[142]</sup> studied 2 groups of male endurance athletes who described themselves as 'adequate eaters' and 'small eaters'. Dietary records revealed that the former group reported a mean CHO intake of 9.8 g/kg/day from a diet providing 54% of energy from CHO. On the other hand, small eaters reported a mean contribution of 62% of energy from CHO yet achieved a lower apparent CHO intake of 7.0 g/kg/day.

Dietary surveys and nutritional practice reveal that, for many athletes, the desire to restrict energy intake to achieve or maintain the low body fat levels that are deemed necessary for optimal performance is a primary concern. We have seen that this is especially true for female athletes and athletes competing in weight division sports, and it may occur despite the high energy expenditure of the training programmes of those involved in endurance events. The extent to which energy intakes are restricted is skewed by the under-reporting errors seen in dietary surveys. However, it is likely that many female endurance athletes, who strive to achieve or maintain low body fat levels, will fail to consume sufficient energy to allow CHO intakes greater than 7 to 8 g/kg/day in routine eating. Instead, they may need to focus on bodyweight control priorities for most of the season, and increase dietary CHO intake for particular periods such as precompetition preparation and during multiday competitive events. However, other athletes, including females in nonendurance sports, should be able to meet their CHO requirements by increasing the percentage of CHO consumed within their usual energy intakes.

Whether athletes have sufficient knowledge of food selection and preparation to construct suitable CHO-rich diets is another important issue. It is not unexpected that the food choices and dietary patterns of a group of people will tend to mirror the eating practices of the larger population in which they live. After all, cultural patterns of eating and food availability within a country will set the baseline from which individual food habits are drawn. Some studies have noted that, although their athletic groups consume different amounts of energy than the general population from which they are drawn, they appear to share similar food choices, as demonstrated by a similar CHO: total energy ratio. If the typical dietary habits of the background population are not focused on CHO-rich foods, this might present as a barrier preventing the athletic subpopulation from meeting higher CHO intake guidelines. For example, Grandjean<sup>[90]</sup> noted that the reported food intake of a pooled group of US athletes did not differ greatly in CHO: total energy ratio to the dietary intake data collected in a 1985 general population survey in the US. By contrast, the authors of a dietary survey of Italian national athletes<sup>[148]</sup> found that the apparent contributions of CHO and fat in their diets was different to the intakes reported in other dietary surveys of athletes from other countries. They suggested that the high proportion of CHO energy was due to the 'mediterranean' dietary practices. Clearly, it is difficult for athletes to achieve significant dietary changes

that conflict with the eating practices of the general community.

On a more direct level, the dietary practices of some athletes may be influenced by the food available in their immediate environment. When athletes live in communal facilities such as a college, sports institute or training camp, they may be reliant on catering facilities to supply most of their food intake over long periods. Several studies have noted that residential dining facilities influence the dietary intake of groups of athletes, both to enhance<sup>[111]</sup> and decrease<sup>[93]</sup> CHO intake compared with their usual home practices. This highlights the responsibility of such catering services to organise suitable CHOrich menu plans and optimise food availability.

Finally, general sports nutrition knowledge and a commitment to sports nutrition goals must be matched by specific knowledge of food composition and practical food preparation skills before suitable dietary intake practices can be guaranteed. We have previously reported, in regard to the CHO loading practices of athletes,<sup>[178]</sup> that even a sophisticated knowledge of the physiology of endurance performance and the principles of increased CHO intake does not guarantee that goals will be achieved. We observed that such athletes avoided sugar-containing foods and chose bulky, fibre-rich foods during a period in which they claimed to be maximising CHO intake.<sup>[178]</sup> Other studies have reported that simple but specific education to increase the intake of compact CHO foods and liquid forms of CHO can enhance the total CHO intakes of endurance athletes.[92]

# 5. Conclusion

The traditional CHO intake guidelines for athletes, expressed in the form of dietary energy ratios, have confused both the guidance and assessment of sports nutrition practices. This is particularly important for endurance athletes who have increased CHO needs to meet the fuel requirements of prolonged training or competition programmes. Setting guidelines in grams of CHO relative to the athlete's body mass and training load provides a more straightforward approach.

The limitations of dietary survey techniques should also be recognised when assessing the adequacy of the dietary practices of athletes. In particular, the errors caused by under-reporting or undereating during the period of dietary survey must be taken into account. In this light, dietary surveys of athletes have shown that the typical male athlete achieves a CHO intake within the recommended range; namely, a daily CHO intake of 5 to 7 g/kg for general training needs, and an intake of 7 to 10 g/kg for periods of increased training or competition. However, individual athletes may need nutrition education or dietary counselling to fine-tune their eating habits to meet specific CHO intake targets. Female athletes, particularly endurance athletes, are less likely to achieve these CHO intake guidelines. This is due to the long term or periodic restriction of total energy intake in order to achieve or maintain low levels of body fat. With professional counselling, females may be helped to find a balance between bodyweight control issues and fuel intake goals.

Although we look to top athletes as role models, it is understandable that many do not achieve optimal nutrition practices. The real or apparent failure of these athletes to achieve the daily CHO intakes recommended by sports nutritionists does not necessarily invalidate the benefits of meeting such guidelines. These recommendations are based on plentiful evidence that strategies that enhance CHO availability also enhance exercise capacity and performance during a single exercise session. Although the present literature fails to provide clear support that long term high CHO intakes enhance the training adaptations and performances of endurance athletes, there is the challenge for sports scientists to undertake well-controlled studies that will better test this hypothesis.

#### References

- American Dietetic Association and Canadian Dietetic Association. Position stand on nutrition for physical fitness and athletic performance for adults. J Am Diet Assoc 1993; 93: 691-6
- Maughan RJ, Horton ES, editors. Final consensus statement: current issues in nutrition in athletics. J Sports Sci 1995; 13 Suppl.: S1

- Ekblom B, Williams C, editors. Final consensus statement: foods, nutrition and soccer performance. J Sports Sci 1994; 12 Suppl.: S3
- New Zealand Dietetic Association. Position paper update: nutritional considerations for physically active adults and athletes in New Zealand. J NZ Diet Assoc 1998; 52: 5-13
- Noakes TD. Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 1997; 29: 571-90
- Hawley JA, Hopkins WG. Aerobic glycolytic and aerobic lipolytic power systems: a new paradigm with implications for endurance and ultraendurance events. Sports Med 1995; 19: 240-50
- Hargreaves M. Metabolic responses to carbohydrate ingestion: effect on exercise performance. In: Lamb DR, Murray R, editors. Perspectives in exercise science and sports medicine. Vol 12. The metabolic basis of performance in exercise and sport. Carmel (IN): Cooper Publishing Company, 1999: 93-124
- Costill DL, Sherman WM, Fink WJ, et al. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr 1981; 34: 1831-6
- Burke LM, Collier GR, Beasley SK, et al. Effect of coingestion of fat and protein with carbohydrate feedings on muscle glycogen storage. J Appl Physiol 1995; 78: 2187-92
- Ivy JL, Lee MC, Brozinick JT, et al. Muscle glycogen storage after different amounts of carbohydrate ingestion. J Appl Physiol 1988; 65: 2018-23
- Blom PCS, Hostmark AT, Vaage O, et al. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc 1987; 19: 491-6
- Neufer PD, Costill DL, Flynn MG, et al. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol 1987; 62: 983-8
- Sherman WM, Brodowicz G, Wright DA, et al. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc 1989; 21: 598-604
- Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol 1991; 71: 1082-8
- Convertino VA, Armstrong LE, Coyle EF, et al. American College of Sports Medicine position stand: exercise and fluid replacement [review]. Med Sci Sports Exerc 1996; 28: i-vii
- Coggan AR, Coyle EF. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sport Sci Rev 1991; 19 1-40
- Hawley JA, Dennis SC, Noakes TD. Oxidation of carbohydrate ingested during prolonged endurance exercise. Sports Med 1992; 14: 27-42
- Saris WHM, van Erpt-Baart MA, Brouns F, et al. Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. Int J Sports Med 1989; 10 Suppl. 1: S26-31
- Brouns F, Saris WHM, Stroecken J, et al. Eating, drinking, and cycling. A controlled Tour de France simulation study, Part II. Effect of diet manipulation. Int J Sports Med 1989; 10 Suppl. 1: S41-8
- 20. US Department of Agriculture and Health and Human Services. Dietary guidelines for Americans. Home and Garden Bulletin no. 232. Washington, DC: United States Department of Agriculture and Health and Human Services, 1990
- National Health and Medical Research Council. Dietary guidelines for Australians. Canberra: Australian Government Publishing Service, 1992

- 22. Ahlborg B, Bergstrom J, Brohult J, et al. Human muscle glycogen content and capacity for prolonged exercise after different diets [in Swedish]. Foersvarsmedicin 1967; 85-99
- Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand 1967; 71: 140-50
- 24. Burke LM. Nutrition for the female athlete. In: Krummel D, Kris-Etherton P, editors. Nutrition in women's health. Gaithersburg (MD): Aspen Publishers, 1995: 263-98
- Costill DL, Flynn MG, Kirwan JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20: 249-54
- Kirwan JP, Costill DL, Mitchell JB, et al. Carbohydrate balance in competitive runners during successive days of intense training. J Appl Physiol 1988; 65: 2601-6
- Lamb DR, Rinehardt KR, Bartels RL, et al. Dietary carbohydrate and intensity of interval swim training. Am J Clin Nutr 1990; 52: 1058-63
- Simonsen JC, Sherman WM, Lamb DR, et al. Dietary carbohydrate, muscle glycogen and power output during rowing training. J Appl Physiol 1991; 70: 1500-5
- Sherman WM, Doyle JA, Lamb D, et al. Dietary carbohydrate, muscle glycogen, and exercise performance during 7 d of training. Am J Clin Nutr 1993; 57: 27-31
- Sherman WM, Wimer GS. Insufficient dietary carbohydrate during training: does it impair athletic performance? Int J Sport Nutr 1991; 1: 28-44
- Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc 1999; 31: 472-85
- Marr JW. Individual dietary surveys: purposes and methods. World Rev Nutr Diet 1971; 13: 105-64
- Block G. A review of validations of dietary assessment methods. Am J Epidemiol 1982; 115: 492-505
- Medlin C, Skinner JD. Individual dietary assessment methodology: a 50-year review of progress. J Am Diet Assoc 1988; 88: 1250-7
- Block G. Human dietary assessment: methods and issues. Prev Med 1989; 18: 653-60
- Schoeller DA. Limitations in the assessment of dietary energy intake by self-report. Metabolism 1995; 44 (2 Suppl. 2): 18-22
- Moore MC, Judlin BC, Kennemur PM. Using graduated food models in taking dietary histories. J Am Diet Assoc 1967; 51: 447-50
- Mullen BJ, Krantztler NJ, Grivetti LE, et al. Validity of a food frequency questionnaire for the determination of individual food intake. Am J Clin Nutr 1984; 39: 136-43
- Surrao J, Sawaya AL, Dallal GE, et al. Use of food quotients in human doubly labeled water studies: Comparable results obtained with 4 widely used food intake methods. J Am Diet Assoc 1998; 98: 1015-20
- 40. Cole TJ, Black AE. Statistical aspects in the design of dietary surveys. In: Medical Research Council Environmental Epidemiology Unit. The dietary assessment of populations. Southampton: MRC Environmental Epidemiology Unit, 1984. Scientific report no. 4: 5-7
- Bingham SA. The dietary assessment of individuals; methods, accuracy, new techniques and recommendations. Nutr Abstr Rev 1987; 57A: 705-42
- Gersovitz M, Madden JP, Smiciklas-Wright H. Validity of the 24-hr. dietary recall and seven-day record for group comparisons. J Am Diet Assoc 1978; 73: 48-55
- Nelson M, Black AE, Morris JA, et al. Between and within-subject variation in nutrient intake from infancy to old age: esti-

mating the number of days required to rank dietary intakes with desired precision. Am J Clin Nutr 1989; 50: 155-67

- Nelson M, Atkinson M, Darbyshire S. Food photography. I: the perception of food portion size from photographs. Br J Nutr 1994 Nov; 72 (5): 649-63
- 45. Kim WW, Mertz WM, Judd JT, et al. Effect of making duplicate food collections on nutrient intakes calculated from diet records. Am J Clin Nutr 1984; 40: 1333-7
- Elwood PC, Bird G. A photographic method of dietary evaluation. Hum Nutr Appl Nutr 1983; 37: 474-7
- Ammermen AS, Kirkley BG, Dennis B, et al. A dietary assessment for individuals with low literacy skills using interactive touch-screen computer technology [abstract]. Am J Clin Nutr 1994; 59 Suppl. 1: 289S
- Schoeller DA. How accurate is self-reported dietary energy intake? Nutr Rev 1990; 48 (10): 373-9
- Black AE, Goldberg GR, Jebb SA, et al. Critical evaluation of energy intake data using fundamental principals of energy physiology: 2. Evaluating the results of published surveys. Eur J Clin Nutr 1991; 45: 583-99
- Livingstone MBE, Prentice AM, Strain JJ, et al. Accuracy of weighed dietary records in studies of diet and health. BMJ 1990; 300: 708-12
- 51. Mertz W, Tsui JC, Judd JT, et al. What are people really eating? The relation between energy intake derived from estimated diet records and intake determined to maintain body weight. Am J Clin Nutr 1991; 54: 291-5
- Fricker J, Baelde D, Igoin-Apfelbaum L, et al. Underreporting of food intake in obese 'small eaters'. Appetite 1992; 19: 273-83
- 53. Black AE, Prentice AM, Goldberg GR, et al. Measurements of total energy expenditure provide insights into the validity of dietary measurements of energy intake. J Am Diet Assoc 1993; 93: 572-9
- Heitmann BL, Lissner L. Dietary underreporting by obese individuals – is it specific or non-specific? BMJ 1995; 311: 986-9
- Macdiarmid JI, Blundell JE. Dietary underreporting: what people say about recording their food intake. Eur J Clin Nutr 1997; 51: 199-200
- Muhlhein LS, Allison DB, Heshka S, et al. Do unsuccessful dieters intentionally underreport food intake? Int J Eat Disord 1998; 24: 259-66
- Johansson L, Solvoll K, Bjørneboe GA, et al. Under-and overreporting of energy intake related to weight status and lifestyle in a nationwide sample. Am J Clin Nutr 1998; 68: 266-74
- Schoeller DA. Measurement of energy expenditure in free-living humans by using doubly labeled water. J Nutr 1988; 118: 1278-89
- Johnson RK, Goran MI, Poehlman ET. Correlates of over- and underreporting of energy intake in healthy older men and women. Am J Clin Nutr 1994; 59: 1286-90
- Goris AHC, Westerterp KR. Underreporting of habitual food intake us explained by undereating in highly motivated lean women. J Nutr 1999; 129: 878-82
- Westerterp KR, Saris WHM, Van Es M, et al. Use of the doubly labeled water technique in humans during heavy sustained exercise. J Appl Physiol 1986; 61: 2162-7
- Schulz LO, Alger S, Harper I, et al. Energy expenditure of elite female runners measured by respiratory chamber and doubly labeled water. J Appl Physiol 1992; 72: 23-8
- Wilmore JH, Wambsgans KC, Brenner M, et al. Is there energy conversation in amenorrheic compared with eumenorrheic distance runners? J Appl Physiol 1992; 72: 15-22

- Edwards JE, Lindeman AK, Mikesky AE, et al. Energy balance in highly trained female endurance runners. Med Sci Sports Exerc 1993; 25: 1398-404
- Fogelholm GM, Kukkonen-Harjula TK, Taipale SA, et al. Resting metabolic rate and energy intake in female gymnasts, figure-skaters and soccer players. Int J Sports Med 1995; 16: 551-6
- 66. Sjödin AM, Andersson AB, Högberg JM, et al. Energy balance in cross-country skiers: a study using doubly labeled water. Med Sci Sports Exerc 1994; 26: 720-4
- Bolland JE, Ward JY, Bolland TW. Improved accuracy of estimating food quantities up to 4 weeks after training. J Am Diet Assoc 1990: 90: 1402-7
- Guthrie HA. Selection and quantification of typical food portions by young adults. J Am Diet Assoc 1994; 84: 1440-4
- Marr JW, Heady JA. Within and between person variation in dietary surveys: numbers of days needed to classify individuals. Hum Nutr Appl Nutr 1986: 40A: 347-64
- Basiotis PP, Welsh SO, Cronin FJ, et al. Number of food intake records required to estimate individual and group nutrient intakes with defined confidence. J Nutr 1987; 117: 1638-41
- Hoover W. Computerised nutrient data base systems: I. Comparison of nutrient analysis systems. J Am Diet Assoc 1983; 82; 501-5
- Guilland JC, Lhuissier M, Peres G, et al. Computerised analysis of food records: role of coding and food composition database. Eur J Clin Nutr 1993; 47: 445-53
- Berry WTC, Beveridge JB, Bransby ER, et al. The diet, haemoglobin values, and blood pressure of Olympic athletes. BMJ 1949; 1: 300-4
- 74. Mays R, Scoular F. Foods eaten by athletes. J Am Diet Assoc 1961; 39: 225-7
- Jokl E. Physiology of exercise. Springfield (IL): Charles C Thomas, 1964
- Matawaran AJ, de Lara MA, Caluag JT. Food intake of some Filipino athletes. Philipp J Nutr 1969 Jul-Sep: 141-54
- Steel JE. A nutritional study of Australian Olympic athletes. Med J Aust 1970; 2: 119-23
- Smith MP, Mendez J, Druckenmiller M, et al. Exercise intensity, dietary intake, and high-density lipoprotein cholesterol in young females competitive swimmers. Am J Clin Nutr 1982; 36: 251-5
- Short SH, Short WR. Four-year study of university athletes' dietary intake. J Am Diet Assoc 1983; 82: 632-45
- Van Handel PJ, Cells KA, Bradley PW, et al. Nutritional status of elite swimmers. J Swimming Res 1984; 1 (1): 27-31
- Barr SI. Energy and nutrient intakes of elite adolescent swimmers. J Can Diet Assoc 1989 Win; 50 (1): 20-4
- Tilgner SA, Schiller MR. Dietary intakes of female college athletes: The need for nutrition education. J Am Diet Assoc 1989; 89: 967-9
- Vallières F, Tremblay A, St-Jean L. Study of the energy balance and the nutritional status of highly trained female swimmers. Nutr Res 1989; 9: 699-708
- Chen JD, Wang JF, Li KJ, et al. Nutritional problems and measures in elite and amateur athletes. Am J Clin Nutr 1989; 49: 1084-9
- Dale E, Goldberg DL. Implications of nutrition in athletes' menstrual cycle irregularities. Can J Appl Sport Sci 1982; 7 (2): 74-8
- Clement DB, Asmundson RC. Nutritional intake and hematological paramaters in endurance runners. Physician Sportsmed 1982; 10 (3): 37-43

- Deuster PA, Kyle SB, Moser PB, et al. Nutritional survey of highly trained women runners. Am J Clin Nutr 1986; 44: 954-62
- Van Erp-Baart AMJ, Saris WHM, Binkhorst RA, et al. Nationwide survery on nutritional habits in elite athletes. Int J Sports Med 1989; 10: S3-10
- Haymes EM, Spillman DM. Iron status of women distance runners, sprinters, and control women. Int J Sports Med 1989; 10: 430-3
- Grandjean AC. Macronutrient intake of US athletes compared with the general population and recommendations made for athletes. Am J Clin Nutr 1989; 49: 1070-6
- Khoo CS, Rawson NE, Robinson ML, et al. Nutrient intake and eating habits of triathletes. Ann Sports Med 1987; 3: 144-50
- Snyder AC, Olmstead Schulz L, Foster C. Voluntary consumption of a carbohydrate supplement by elite speed skaters. J Am Diet Assoc 1989; 89: 1125-7
- Ellsworth NM, Hewitt BF, Haskell WL. Nutrient intake of elite male and female nordic skiers. Physician Sportsmed 1985 Feb; 13 (2) 78-92
- Nowak RK, Knudsen KS, Olmstead Schulz L. Body composition and nutrient intakes of college men and women basketball players. J Am Diet Assoc 1988; 88: 575-8
- Moffatt RJ. Dietary status of elite female high school gymnasts: inadequacy of vitamin and mineral intake. J Am Diet Assoc 1984; 84 : 1361-3
- Loosli AR, Benson J, Gillien M, et al. Nutrition habits and knowledge in competitive adolescent gymnasts. Physician Sportsmed 1986; 14 (8): 119-30
- Benardot D, Schwarz M, Weitzenfeld Heller D. Nutrient intake in young, highly competitive gymnasts. J Am Diet Assoc 1989; 89: 401-3
- Reggiani E, Arras GB, Trabacca S, et al. Nutritional status and body composition of adolescent female gymnasts. J Sports Med Phys Fitness 1989; 29: 285-8
- Howat PM, Carbo ML, Mills GQ, et al. The influence of diet, body fat, menstrual cycling, and activity upon the bone density of females. J Am Diet Assoc 1989; 89: 1305-7
- Heyward VH, Sandovel WM, Colville BC. Anthropometric, body composition and nutritional profiles of bodybuilders during training. J Appl Sport Sci Res 1989; 3 (2): 22-9
- 101. Lamar-Hildebrand N, Saldanha L, Endres J. Dietary and exercise practices of college-aged female bodybuilders. J Am Diet Assoc 1989; 89: 1308-11
- 102. Ferro-Luzzi A, Venerando A. Aims and results of dietary surveys on athletes. In: Parizkova J, Rogozkin VA, editors. Nutrition, physical fitness and health. Baltimore (MD): University Park Press, 1978: 145-54
- Saltin B, Karlsson J. Die erhahrung des sportlers. In: Hollman W, editor. Zentrale theme der sportphysiologie. Heidelberg: Springer, 1972
- 104. Klepping J, Boggio V, Marcer I. Résultats d'enquêtes alimentaires réalisées chez des sportifs français. Schweiz Z Sportmed 1984; 31: 15-9
- Johnson A, Collins P, Higgins I, et al. Psychological, nutritional and physical status of olympic road cyclists. Br J Sports Med 1985; 19: 11-4
- 106. Heinemann L, Zerbes H. Physical activity, fitness, and diet: behavior in the population compared with elite athletes in the GDR. Am J Clin Nutr 1989; 49 Suppl. 5: 1007-16
- Burke LM, Read RSD. Diet patterns of elite Australian male triathletes. Physician Sportsmed 1987 Feb; 15 (2): 140-55

- De Wijn JF, Leusink J, Post GB. Diet, body composition and physical condition of champion rowers during periods of training and out of training. Bibl Nutr Dieta 1979; 27: 143-8
- 109. Bilanin JE, Blanchard MS, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc 1989; 21: 66-70
- 110. Tarnopolsky MA, MacDougall JD, Atkinson SA. Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol 1988; 64 : 187-93
- 111. Jr Hickson JF, Wolinsky I, Pivarnik JM, et al. Nutritional profile of football athletes eating from a training table. Nutr Res 1987; 7: 27-34
- 112. Hickson Jr JF, Duke MA, Risser WL, et al. Nutritional intake from food sources of high school football athletes. J Am Diet Assoc 1987; 87: 1656-9
- 113. Millard-Stafford M, Rosskopf LB, Sparling PB. Coronary heart disease: risk profiles of college football players. Physician Sportsmed 1989; 17 (9): 151-63
- 114. Burke LM, Read RSD. A study of dietary patterns of elite Australian football players. Can J Sports Sci 1988; 13: 15-9
- 115. Jacobs I, Westlin N, Karlsson J, et al. Muscle glycogen and diet in elite soccer players. Eur J Appl Physiol 1982; 48: 297-302
- 116. Hickson Jr JF, Johnson CW, Schrader JW, et al. Promotion of athletes' nutritional intake by a university foodservice facility. J Am Diet Assoc 1987; 87: 926-7
- 117. Ward P, Tellez T, Ward R. U.S.A. Discus Camp. Track Field Q Rev 1976; 76 (1): 29-39
- 118. Faber M, Benadé AJS, van Eck M. Dietary Intake, anthropometric measurements, and blood lipid values in weight training athletes (body builders). Int J Sports Med 1986; 7: 342-6
- 119. Kleiner SM, Calabrese LH, Fielder KM, et al. Dietary influences on cardiovascular disease risk in anabolic steroid-using and nonusing bodybuilders. J Am Coll Nutr 1989; 8: 109-19
- 120. Nishida Y, Akaoka I, Hayashi E, et al. Elevated erythrocyte phosphoribosylpyrophosphate and ATP concentrations in Japanese sumo wrestlers. Br J Nutr 1983; 49: 3-7
- 121. Benson JE, Allemann Y, Theintz GE, et al. Eating problems and calorie intake levels in Swiss adolescent athletes. Int J Sports Med 1990; 11: 249-52
- 122. Risser WL, Lee EJ, Leblanc A, et al. Bone density in eumenorrheic female college athletes. Med Sci Sports Exerc 1990; 22: 570-4
- 123. Barr SI. Relationship of eating attitudes to anthropometric variables and dietary intakes of female collegiate swimmers. J Am Diet Assoc 1991; 91: 976-7
- 124. Berning JR, Troup JP, VanHandel PJ, et al. The nutritional habits of young adolescent swimmers. Int J Sports Nutr 1991; 1: 240-8
- 125. Carey GB. A nutrition guidebook to improve the diet of male and female collegiate swimmers. J Swim Res 1992; 8: 24-9
- 126. MacLaren DP, Harte JE, Hackett AF. A nutritional analysis of elite pre-adolescent swimmers. In: MacLaren DP, Reilly T, Lees A, editors. Biomechanics and medicine in swimming. London: E & FN Spon, 1992
- 127. Hawley JA, Williams MM. Dietary intakes of age-group swimmers. Br J Sports Med 1991; 25: 154-8
- 128. Nutter J. Seasonal changes in female athletes' diets. Int J Sport Nutr 1991; 1: 395-407
- Ludbrook C, Clark D. Energy expenditure and nutrient intake in long-distance runners. Nutr Res 1992; 12: 689-99
- Beidleman BA, Puhl JL, De Souza MJ. Energy balance in female distance runners. Am J Clin Nutr 1995; 61: 303-11
- 131. Baer JT, Taper LJ, Gwazdauskas FG, et al. Diet, hormonal, and metabolic factors affecting bone mineral density in adolescent

amenorrheic and eumenorrheic female runners. J Sports Med Phys Fitness 1992; 32: 51-8

- Tanaka JA, Tanaka H, Landis W. An assessment of carbohydrate intake in collegiate distance runners. Int J Sports Nutr 1995; 5: 206-14
- 133. Wiita BG, Stombaugh IA. Nutrition knowledge, eating practices, and health of adolescent female runners: a 3-year longitudinal study. Int J Sport Nutr 1996; 6: 414-25
- 134. Suguira K, Suzuki I, Kobayashi K. Nutritional intake of elite Japanese track-and-field athletes. Int J Sport Nutr 1999; 9: 202-12
- 135. Fogelholm M, Rehunen S, Gref CG, et al. Dietary intake and thiamin, iron, and zinc status in elite Nordic skiers during different training periods. Int J Sport Nutr 1992; 2: 351-65
- 136. Kirchner EM, Lewis RD, O'Connor PJ. Bone mineral density and dietary intake of female college gymnasts. Med Sci Sports Exerc 1995; 27: 543-9
- 137. Jonnalagadda SS, Benardot D, Nelson M. Energy and nutrient intakes of the United States national women's artistic gymnastics team. Int J Sport Nutr 1998; 8: 331-44
- Faber M, Spinnler-Benadé AJ, Daubitzer A. Dietary intake, anthropometric measurements and plasma lipid levels in throwing field athletes. Int J Sports Med 1990; 11: 140-5
- 139. Felder JM, Burke LM, Lowdon BJ, et al. Nutritional practices of elite female surfers during training and competition. Int J Sports Nutr 1998; 8: 36-48
- 140. Ersoy G. Nutrient intakes and iron status of Turkish female handball players. In: Kies CV, Driskell JA, editors. Sports nutrition: minerals and electrolytes. Boca Raton (FL): CRC Press, 1995: 59-64
- 141. Brown AC, Herb RA. Dietary intake and body composition of Mike Pigg – 1988 Triathlete of the Year. Clin Sports Med 1990; 2: 129-37
- 142. Thompson JL, Manore MM, Skinner JS, et al. Daily energy expenditure in make endurance athletes with differing energy intakes. Med Sci Sports Exerc 1995; 27: 347-54
- 143. Couzy F, Lafargue P, Guezennec CY. Zinc metabolism in the athlete: influence of training, nutrition and other factors. Int J Sports Med 1990; 11: 263-6
- 144. Moses K, Manore MM. Development and testing of a carbohydrate monitoring tool for athletes. J Am Diet Assoc 1991; 91: 962-5
- 145. Burke LM, Gollan RA, Read RSD. Dietary intakes and food use of groups of elite Australian male athletes. Int J Sports Nutr 1991; 1: 378-94
- 146. Robertson JD, Maughan RJ, Milne AC, et al. Hematological status of male runners in relation to the extent of physical training. Int J Sports Nutr 1992; 2: 366-75
- 147. Coetzer P, Noakes TD, Sanders B, et al. Superior fatigue resistance of elite black South African distance runners. J Appl Physiol 1993; 75: 1822-7
- 148. Schena F, Pattini A, Mantovanelli S. Iron status in athletes involved in endurance and in prevalently anaerobic sports. In: Kies CV, Driskell JA, editors. Sports nutrition: minerals and electrolytes. Boca Raton (FL): CRC Press, 1995: 65-80
- 149. Niekamp RA, Baer JT. In-season dietary adequacy of trained male cross-country runners. Int J Sports Nutr 1995; 5: 45-55
- 150. Talbott SM, Shapses SA. Fasting and energy intake influence bone turnover in lightweight male rowers. Int J Sports Nutr 1998; 8: 377-87
- 151. Jensen CD, Zaltas ES, Whittam JH. Dietary intakes of male endurance cyclists during training and racing. J Am Diet Assoc 1992; 92: 986-7

- Barr SI, Costill DL. Effect of increased training volume on nutrient intake of male collegiate swimmers. Int J Sports Med 1992; 13: 47-51
- Roberts D, Smith DJ. Training at moderate altitude: iron status of elite male swimmers. J Lab Clin Med 1992; 120: 387-91
- 154. Caldarone G, Tranquilli C, Giampietro M. Assessment of the nutritional state of top level football players. In: Santilli G, editor. Sports medicine applied to football. Rome: Instituto dietitian Scienza della Sport del Coni, 1990: 133-41
- 155. Bangsbo J, Nørregaard L, Thorsøe F. The effect of carbohydrate diet on intermittent exercise performance. Int J Sports Med 1992; 13: 152-7
- 156. Zuliani G, Baldo-Enzi G, Palmieri E, et al. Lipoprotein profile, diet and body composition in athletes practicing mixed anaerobic activities. J Sports Med Phys Fitness 1996; 36: 211-6
- 157. Rico-Sanz J, Frontera WR, Molé PA, et al. Dietary and performance assessment of elite soccer players during a period of intense training. Int J Sport Nutr 1998; 8: 230-40
- Schokman CP, Rutishauser IHE, Wallace RJ. Pre-and postgame macronutrient intake of a group of elite Australian players. Int J Sport Nutr 1999; 9: 60-9
- Baldo-Enzi G, Giada F, Zuliani G, et al. Lipid and apoprotein modifications in body builders during and after self-administration of anabolic steroids. Metabolism 1990; 39: 203-8
- Keith RE, Stone MH, Carson RE, et al. Nutritional status of lipid profiles of trained steroid-using bodybuilders. Int J Sport Nutr 1996; 6: 247-54
- 161. Bigard AX, Guillemot PY, Chauve JY, et al. Nutrient intake of elite sailors during a solitary long-distance offshore race. Int J Sport Nutr 1998; 8: 364-76
- 162. Garcia-Roves PM, Terrados N, Fernandez SF, et al. Macronutrients intake of top level cyclists during continuous competition – change in the feeding pattern. Int J Sports Med 1998: 19: 61-7
- 163. Grandjean AC, Lolkus LJ, Lind R, et al. Dietary intake of female cyclists during repeated days of racing. Cycling Sci 1992 Fall; 21-5
- Peters AJ, Dressendorfer RH, Rimar J, et al. Diets of endurance runners competing in a 20-day road race. Physician Sportsmed 1986; 14 (7): 63-70
- Rontoyannis GP, Skoulis T, Pavlou KN. Energy balance in ultramarathon running. Am J Clin Nutr 1989; 49: 976-9
- 166. Eden BD, Abernethy PJ. Nutritional intake during an ultraendurance running race. Int J Sport Nutr 1994; 4: 166-74

- 167. Frentsos JA, Baer JT. Increased energy and nutrient intake during training and competition improves elite triathletes' endurance performance. Int J Sport Nutr 1997; 7: 61-71
- Veitl V, Irsigler K, Ogris E. Body composition, glucose tolerance, serum insulin, serum lipids and eating behaviour in top Austrian sportsmen. Nutr Metab 1977; 21 (S1): 88-94
- 169. Welch PK, Zager KA, Endres J, et al. Nutrition education, body composition, and dietary intake of female college athletes. Physician Sportsmed 1987; 15 (1): 63-74
- Costill DL. Carbohydrates for exercise: dietary demands for optimal performance. Int J Sports Med 1988; 9: 1-18
- 171. Guilland JC, Penaranda T, Gallet C, et al. Vitamin status of young athletes including the effects of supplementation. Med Sci Sports Exerc 1989; 21: 441-9
- 172. Barr SI. Women, nutrition and exercise: a review of athletes' intakes and a discussion of energy balance in active women. Prog Food Nutr Sci 1987; 11: 307-61
- 173. United States Department of Agriculture, Human Nutrition Information Service. Nationwide food consumption survey. Continuing survey of food intakes by individuals. Men 19-50 years, 1 day. Hyattsville (MD): USDA, 1985
- 174. United States Department of Agriculture, Human Nutrition Information Service. Nationwide food consumption survey. Continuing survey of food intakes by individuals. Women 19-50 years and children 1-5 years, 1 day. Hyattsville (MD): USDA, 1985
- 175. Australian Bureau of Statistics. National nutrition survey: nutrient intakes and physical measurements Australia 1995. Canberra: Commonwealth of Australia, 1998
- 176. Hawley J, Burke L. Peak performance: training and nutrition strategies for sport. Sydney: Allen and Unwin, 1998
- 177. Tanser T. Train hard, win easy: the Kenyan Way. Mountain View (CA): Track and Field News, 1997
- Burke LM, Read RSD. A study of carbohydrate loading techniques used by marathon runners. Can J Sports Sci 1987; 12: 6-10

Correspondence and offprints: Dr *Louise M. Burke*, Department of Sports Nutrition, Australian Institute of Sport, PO Box 176, Belconnen ACT, Australia 2616. E-mail: louise.burke@ausport.gov.au